1 |
BIAN X L, LIU R, MENG Y, et al. Lipid metabolism and cancer[J]. J Exp Med, 2021, 218(1): e20201606.
|
2 |
LU Y, WEI X, CHEN M L, et al. Non-ceruloplasmin-bound copper and copper speciation in serum with extraction using functionalized dendritic silica spheres followed by ICP-MS detection[J]. Anal Chim Acta, 2023, 1251: 340993.
|
3 |
CHEN M, ZHENG J S, LIU G H, et al. Ceruloplasmin and hephaestin jointly protect the exocrine pancreas against oxidative damage by facilitating iron efflux[J]. Redox Biol, 2018, 17: 432-439.
|
4 |
WANG P W, WU T H, PAN T L, et al. Integrated proteome and cytokine profiles reveal ceruloplasmin eliciting liver allograft tolerance via antioxidant cascades[J]. Front Immunol, 2018, 9: 2216.
|
5 |
WANG B, WANG X P. Does ceruloplasmin defend against neurodegenerative diseases?[J]. Curr Neuropharmacol, 2019, 17(6): 539-549.
|
6 |
GUPTA M N, UVERSKY V N. Moonlighting enzymes: when cellular context defines specificity[J]. Cell Mol Life Sci, 2023, 80(5): 130.
|
7 |
TIAN S L, JONES S M, SOLOMON E I. Role of a tyrosine radical in human ceruloplasmin catalysis[J]. ACS Cent Sci, 2020, 6(10): 1835-1843.
|
8 |
CURNOCK R, CULLEN P J. Mammalian copper homeostasis requires retromer-dependent recycling of the high-affinity copper transporter 1[J]. J Cell Sci, 2020, 133(16): jcs249201.
|
9 |
DAS S, SAHOO P K. Ceruloplasmin, a moonlighting protein in fish[J]. Fish Shellfish Immunol, 2018, 82: 460-468.
|
10 |
LUTSENKO S. Dynamic and cell-specific transport networks for intracellular copper ions[J]. J Cell Sci, 2021, 134(21): jcs240523.
|
11 |
CHEN J, JIANG Y H, SHI H, et al. The molecular mechanisms of copper metabolism and its roles in human diseases[J]. Pflugers Arch, 2020, 472(10): 1415-1429.
|
12 |
NEŞELIOĞLU S, OĞUZ E F, EREL Ö. Development of a new colorimetric, kinetic and automated ceruloplasmin ferroxidase activity measurement method[J]. Antioxidants (Basel), 2022, 11(11): 2187.
|
13 |
VASILYEV V B. Looking for a partner: ceruloplasmin in protein-protein interactions[J]. Biometals, 2019, 32(2): 195-210.
|
14 |
SHANG Y X, LUO M Y, YAO F P, et al. Ceruloplasmin suppresses ferroptosis by regulating iron homeostasis in hepatocellular carcinoma cells[J]. Cell Signal, 2020, 72: 109633.
|
15 |
DOGUER C, HA J H, COLLINS J F. Intersection of iron and copper metabolism in the mammalian intestine and liver[J]. Compr Physiol, 2018, 8(4): 1433-1461.
|
16 |
MARCHI G, BUSTI F, LIRA ZIDANES A, et al. Aceruloplasminemia: a severe neurodegenerative disorder deserving an early diagnosis[J]. Front Neurosci, 2019, 13: 325.
|
17 |
DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
|
18 |
HEALY J, TIPTON K. Ceruloplasmin and what it might do[J]. J Neural Transm, 2007, 114(6): 777-781.
|
19 |
VASILYEV V B. Interactions of caeruloplasmin with other proteins participating in inflammation[J]. Biochem Soc Trans, 2010, 38(4): 947-951.
|
20 |
KO C W, QU J, BLACK D D, et al. Regulation of intestinal lipid metabolism: current concepts and relevance to disease[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(3): 169-183.
|
21 |
YKI-JÄRVINEN H, LUUKKONEN P K, HODSON L, et al. Dietary carbohydrates and fats in nonalcoholic fatty liver disease[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(11): 770-786.
|
22 |
SEEBACHER F, ZEIGERER A, KORY N, et al. Hepatic lipid droplet homeostasis and fatty liver disease[J]. Semin Cell Dev Biol, 2020, 108: 72-81.
|
23 |
SONG Z Y, XIAOLI A, YANG F J. Regulation and metabolic significance of de novo lipogenesis in adipose tissues[J]. Nutrients, 2018, 10(10): 1383.
|
24 |
LEE E, KORF H, VIDAL-PUIG A. An adipocentric perspective on the development and progression of non-alcoholic fatty liver disease[J]. J Hepatol, 2023, 78(5): 1048-1062.
|
25 |
MA Y B, TEMKIN S M, HAWKRIDGE A M, et al. Fatty acid oxidation: an emerging facet of metabolic transformation in cancer[J]. Cancer Lett, 2018, 435: 92-100.
|
26 |
ZHONG S S, LI L X, SHEN X, et al. An update on lipid oxidation and inflammation in cardiovascular diseases[J]. Free Radic Biol Med, 2019, 144: 266-278.
|
27 |
KIM C H, PARK J Y, KIM J Y, et al. Elevated serum ceruloplasmin levels in subjects with metabolic syndrome: a population-based study[J]. Metabolism, 2002, 51(7): 838-842.
|
28 |
ENGSTRÖM G, STAVENOW L, HEDBLAD B, et al. Inflammation-sensitive plasma proteins, diabetes, and mortality and incidence of myocardial infarction and stroke: a population-based study[J]. Diabetes, 2003, 52(2): 442-447.
|
29 |
XIE L P, YUAN Y M, XU S M, et al. Downregulation of hepatic ceruloplasmin ameliorates NAFLD via SCO1-AMPK-LKB1 complex[J]. Cell Rep, 2022, 41(3): 111498.
|
30 |
GUTHRIE L M, SOMA S, YUAN S, et al. Elesclomol alleviates Menkes pathology and mortality by escorting Cu to cuproenzymes in mice[J]. Science, 2020, 368(6491): 620-625.
|
31 |
AIGNER E, STRASSER M, HAUFE H, et al. A role for low hepatic copper concentrations in nonalcoholic fatty liver disease[J]. Am J Gastroenterol, 2010, 105(9): 1978-1985.
|
32 |
HEFFERN M C, PARK H M, AU-YEUNG H Y, et al. In vivo bioluminescence imaging reveals copper deficiency in a murine model of nonalcoholic fatty liver disease[J]. Proc Natl Acad Sci USA, 2016, 113(50): 14219-14224.
|
33 |
TANG Z, GASPERKOVA D, XU J, et al. Copper deficiency induces hepatic fatty acid synthase gene transcription in rats by increasing the nuclear content of mature sterol regulatory element binding protein 1[J]. J Nutr, 2000, 130(12): 2915-2921.
|
34 |
HERZIG S, SHAW R J. AMPK: guardian of metabolism and mitochondrial homeostasis[J]. Nat Rev Mol Cell Biol, 2018, 19(2): 121-135.
|
35 |
TREFTS E, SHAW R J. AMPK: restoring metabolic homeostasis over space and time[J]. Mol Cell, 2021, 81(18): 3677-3690.
|
36 |
LIN S C, HARDIE D G. AMPK: sensing glucose as well as cellular energy status[J]. Cell Metab, 2018, 27(2): 299-313.
|
37 |
CUSI K, ALKHOURI N, HARRISON S A, et al. Efficacy and safety of PXL770, a direct AMP kinase activator, for the treatment of non-alcoholic fatty liver disease (STAMP-NAFLD): a randomised, double-blind, placebo-controlled, phase 2a study[J]. Lancet Gastroenterol Hepatol, 2021, 6(11): 889-902.
|
38 |
YANG H J, RALLE M, WOLFGANG M J, et al. Copper-dependent amino oxidase 3 governs selection of metabolic fuels in adipocytes[J]. PLoS Biol, 2018, 16(9): e2006519.
|
39 |
BOUR S, CASPAR-BAUGUIL S, IFFIÚ-SOLTÉSZ Z, et al. Semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 deficiency reduces leukocyte infiltration into adipose tissue and favors fat deposition[J]. Am J Pathol, 2009, 174(3): 1075-1083.
|
40 |
KRISHNAMOORTHY L, COTRUVO J A Jr, CHAN J, et al. Copper regulates cyclic-AMP-dependent lipolysis[J]. Nat Chem Biol, 2016, 12(8): 586-592.
|
41 |
RAIA S, CONTI A, ZANARDI A, et al. Ceruloplasmin-deficient mice show dysregulation of lipid metabolism in liver and adipose tissue reduced by a protein replacement[J]. Int J Mol Sci, 2023, 24(2): 1150.
|
42 |
MANNELLA V, CHAABANE L, CANU T, et al. Lipid dysmetabolism in ceruloplasmin-deficient mice revealed both in vivo and ex vivo by MRI, MRS and NMR analyses[J]. FEBS Open Bio, 2023. DOI: 10.1002/2211-5463.13740.
|
43 |
KONO S. Aceruloplasminemia[M]//BHATIA K P, SCHNEIDER S A. International review of neurobiology. Amsterdam: Elsevier, 2013: 125-151.
|
44 |
LIU Z D, WANG M, ZHANG C B, et al. Molecular functions of ceruloplasmin in metabolic disease pathology[J]. Diabetes Metab Syndr Obes, 2022, 15: 695-711.
|
45 |
CORRADINI E, BUZZETTI E, DONGIOVANNI P, et al. Ceruloplasmin gene variants are associated with hyperferritinemia and increased liver iron in patients with NAFLD[J]. J Hepatol, 2021, 75(3): 506-513.
|
46 |
THEPSUWAN P, BHATTACHARYA A, SONG Z F, et al. Hepatic SEL1L-HRD1 ER-associated degradation regulates systemic iron homeostasis via ceruloplasmin[J]. Proc Natl Acad Sci USA, 2023, 120(2): e2212644120.
|
47 |
PATEL B N, DUNN R J, JEONG S Y, et al. Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury[J]. J Neurosci, 2002, 22(15): 6578-6586.
|
48 |
CZŁONKOWSKA A, LITWIN T, DUSEK P, et al. Wilson disease[J]. Nat Rev Dis Primers, 2018, 4(1): 21.
|
49 |
YURKOVA I L, ARNHOLD J, FITZL G, et al. Fragmentation of mitochondrial cardiolipin by copper ions in the Atp7b -/- mouse model of Wilson′s disease[J]. Chem Phys Lipids, 2011, 164(5): 393-400.
|
50 |
ARENAS DE LARRIVA A P, LIMIA-PÉREZ L, ALCALÁ-DÍAZ J F, et al. Ceruloplasmin and coronary heart disease: a systematic review[J]. Nutrients, 2020, 12(10): 3219.
|
51 |
FOX P L, MAZUMDER B, EHRENWALD E, et al. Ceruloplasmin and cardiovascular disease[J]. Free Radic Biol Med, 2000, 28(12): 1735-1744.
|