1 |
PAN X F, WANG L M, PAN A. Epidemiology and determinants of obesity in China[J]. Lancet Diabetes Endocrinol, 2021, 9(6): 373-392.
|
2 |
HRUBY A, HU F B. The epidemiology of obesity: a big picture[J]. Pharmacoeconomics, 2015, 33(7): 673-689.
|
3 |
GONZÁLEZ-MUNIESA P, MÁRTINEZ-GONZÁLEZ M A, HU F B, et al. Obesity[J]. Nat Rev Dis Primers, 2017, 3: 17034.
|
4 |
XIA Q H, GRANT S F A. The genetics of human obesity[J]. Ann N Y Acad Sci, 2013, 1281(1): 178-190.
|
5 |
LOOS R J F, YEO G S H. The genetics of obesity: from discovery to biology[J]. Nat Rev Genet, 2022, 23(2): 120-133.
|
6 |
SINGH R K, KUMAR P, MAHALINGAM K. Molecular genetics of human obesity: a comprehensive review[J]. C R Biol, 2017, 340(2): 87-108.
|
7 |
HANSEN M C, HAFERLACH T, NYVOLD C G. A decade with whole exome sequencing in haematology[J]. Br J Haematol, 2020, 188(3): 367-382.
|
8 |
GULATI A, SOMLO S. Whole exome sequencing: a state-of-the-art approach for defining (and exploring!) genetic landscapes in pediatric nephrology[J]. Pediatr Nephrol, 2018, 33(5): 745-761.
|
9 |
LIU X P, WANG J G, CHEN L N. Whole-exome sequencing reveals recurrent somatic mutation networks in cancer[J]. Cancer Lett, 2013, 340(2): 270-276.
|
10 |
GILL R, CHEUNG Y H, SHEN Y F, et al. Whole-exome sequencing identifies novel LEPR mutations in individuals with severe early onset obesity[J]. Obesity (Silver Spring), 2014, 22(2): 576-584.
|
11 |
SAEED S, BONNEFOND A, TAMANINI F, et al. Loss-of-function mutations in ADCY3 cause monogenic severe obesity[J]. Nat Genet, 2018, 50(2): 175-179.
|
12 |
SCHEIDECKER S, ETARD C, PIERCE N W, et al. Exome sequencing of Bardet-Biedl syndrome patient identifies a null mutation in the BBSome subunit BBIP1 (BBS18)[J]. J Med Genet, 2014, 51(2): 132-136.
|
13 |
MARENNE G, HENDRICKS A E, PERDIKARI A, et al. Exome sequencing identifies genes and gene sets contributing to severe childhood obesity, linking PHIP variants to repressed POMC transcription[J]. Cell Metab, 2020, 31(6): 1107-1119.e12.
|
14 |
BENJANNET S, RONDEAU N, DAY R, et al. PC1 and PC2 are proprotein convertases capable of cleaving proopiomelanocortin at distinct pairs of basic residues[J]. Proc Natl Acad Sci USA, 1991, 88(9): 3564-3568.
|
15 |
ELIAS C F, ASCHKENASI C, LEE C, et al. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area[J]. Neuron, 1999, 23(4): 775-786.
|
16 |
COWLEY M A, SMART J L, RUBINSTEIN M, et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus[J]. Nature, 2001, 411(6836): 480-484.
|
17 |
AL-MASSADI O, QUIÑONES M, CLASADONTE J, et al. MCH regulates SIRT1/FoxO1 and reduces POMC neuronal activity to induce hyperphagia, adiposity, and glucose intolerance[J]. Diabetes, 2019, 68(12): 2210-2222.
|
18 |
TOLSON K P, GEMELLI T, GAUTRON L, et al. Postnatal Sim1 deficiency causes hyperphagic obesity and reduced Mc4r and oxytocin expression[J]. J Neurosci, 2010, 30(10): 3803-3812.
|
19 |
PIGEYRE M, YAZDI F T, KAUR Y, et al. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity[J]. Clin Sci (Lond), 2016, 130(12): 943-986.
|
20 |
TIAN Y, PENG B Q, FU X H. New ADCY3 variants dance in obesity etiology[J]. Trends Endocrinol Metab, 2018, 29(6): 361-363.
|
21 |
DILSIZ P, AKLAN I, SAYAR ATASOY N, et al. MCH neuron activity is sufficient for reward and reinforces feeding[J]. Neuroendocrinology, 2020, 110(3/4): 258-270.
|
22 |
COSTANZO-GARVEY D L, PFLUGER P T, DOUGHERTY M K, et al. KSR2 is an essential regulator of AMP kinase, energy expenditure, and insulin sensitivity[J]. Cell Metab, 2009, 10(5): 366-378.
|
23 |
FERNANDEZ M R, HENRY M D, LEWIS R E. Kinase suppressor of Ras 2 (KSR2) regulates tumor cell transformation via AMPK[J]. Mol Cell Biol, 2012, 32(18): 3718-3731.
|
24 |
DA FONSECA A C P, ASSIS I S S, SALUM K C R, et al. SH2B1 variants as potential causes of non-syndromic monogenic obesity in a Brazilian cohort[J]. Eat Weight Disord, 2022, 27(8): 3665-3674.
|
25 |
NIAZI R K, GJESING A P, HOLLENSTED M, et al. Identification of novel LEPR mutations in Pakistani families with morbid childhood obesity[J]. BMC Med Genet, 2018, 19(1): 199.
|
26 |
LI Y Y, ZHANG H, TU Y F, et al. Monogenic obesity mutations lead to less weight loss after bariatric surgery: a 6-year follow-up study[J]. Obes Surg, 2019, 29(4): 1169-1173.
|
27 |
MARKHAM A. Setmelanotide: first approval[J]. Drugs, 2021, 81(3): 397-403.
|
28 |
OBRADOVIC M, SUDAR-MILOVANOVIC E, SOSKIC S, et al. Leptin and obesity: role and clinical implication[J]. Front Endocrinol (Lausanne), 2021, 12: 585887.
|
29 |
BAMSHAD M J, NG S B, BIGHAM A W, et al. Exome sequencing as a tool for Mendelian disease gene discovery[J]. Nat Rev Genet, 2011, 12(11): 745-755.
|
30 |
VELTMAN J A, BRUNNER H G. De novo mutations in human genetic disease[J]. Nat Rev Genet, 2012, 13(8): 565-575.
|
31 |
PAZ-FILHO G, BOGUSZEWSKI M C S, MASTRONARDI C A, et al. Whole exome sequencing of extreme morbid obesity patients: translational implications for obesity and related disorders[J]. Genes, 2014, 5(3): 709-725.
|
32 |
THAKER V V, ESTEVES K M, TOWNE M C, et al. Whole exome sequencing identifies RAI1 mutation in a morbidly obese child diagnosed with ROHHAD syndrome[J]. J Clin Endocrinol Metab, 2015, 100(5): 1723-1730.
|