Mucin-type O-glycosylation is one of the most common post-translational modifications in proteins, capable of altering protein conformation and biological functions. It plays a crucial role in biological processes such as cell signaling, cell adhesion, and immune responses. Polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3), as the initiating enzyme of mucin-type O-glycosylation, is of paramount importance in maintaining the homeostasis of human cells and tissues. Dysfunction of GALNT3 has been found to play a role in various diseases, such as calcium-phosphorus metabolism disorders and atherosclerosis. Additionally, GALNT3 is abnormally expressed in several types of tumors, including colorectal cancer, lung cancer, and ovarian cancer. Its expression is associated with the clinical pathological features of patients and poor prognosis, making it a potential biomarker for early tumor diagnosis and prognosis evaluation. Further research shows that GALNT3 can both regulate glycosylation levels to reduce adhesion between tumor cells and activate multiple metabolism-related pathways, promoting tumor cell invasion and metastasis. This review summarizes the role of GALNT3 in the development of malignant tumors and discusses the prospects and challenges of developing anti-tumor drugs targeting GALNT3.
GAO Yixuan, ZHANG Yichi, DAI Luyan, MA Jiao. Research progress of GALNT3 as a potential tumor molecular marker and drug target. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2024, 44(11): 1460-1465 doi:10.3969/j.issn.1674-8115.2024.11.014
在GALNT家族成员中,GALNT3参与多种生理过程,并且已发现其表达异常与人类癌症进展相关,如结肠癌、肺癌、胆囊癌、前列腺癌、胰腺癌等[12-14]。但相比GALNT家族中的其他成员,目前对GALNT3在肿瘤中的研究相对较少,并且也没有综述系统归纳过GALNT3与肿瘤发生发展的关系。而本课题组近期发现,GALNT3在弥漫性大B细胞淋巴瘤(diffuse large B cell lymphoma,DLBCL)中高表达,并且与DLBCL的预后密切相关,推测GALNT3不仅可以在实体瘤中发挥作用,也与血液肿瘤的发生发展有关。该文综述了GALNT3在人体中主要发挥的生理功能,重点讨论了该分子与多种癌症预后的关系,以及影响肿瘤细胞增殖、侵袭和转移的分子机制,并关注了GALNT3在DLBCL预后中发挥的作用。最后,该文介绍了目前靶向GALNT3的抗肿瘤药物研究,同时针对靶向糖基化在肿瘤治疗中的前景与挑战进行了探讨,并提出了未来新药研发的可行方向,以期为多种癌症的临床治疗提供更有效的策略和手段。
Note: The orange part represents the N-terminal cytoplasm tail, the purple part represents the transmembrane domain, the blue part is the stem region, the green part is the catalytic domain, the cyan part is the linker region, the red part represents the lectin domain, and the grey part is the C-terminal residue. The figure was prepared using PyMOL software.
Fig 1
Schematic diagram of structural conformation of GALNT3 protein
GAO Yixuan, ZHANG Yichi and DAI Luyan were responsible for writing and revision of the paper; MA Jiao was responsible for guiding article writing and participated in paper revision. All the authors have read the final manuscript and agreed to the submission.
利益冲突声明
所有作者声明不存在利益冲突。
COMPETING INTERESTS
All the authors disclose no relevant conflict of interests.
ESMAIL S, MANOLSON M F. Advances in understanding N-glycosylation structure, function, and regulation in health and disease[J]. Eur J Cell Biol, 2021, 100(7/8): 151186.
WANDALL H H, NIELSEN M A I, KING-SMITH S, et al. Global functions of O-glycosylation: promises and challenges in O-glycobiology[J]. FEBS J, 2021, 288(24): 7183-7212.
GARAY Y C, CEJAS R B, LORENZ V, et al. Polypeptide N-acetylgalactosamine transferase 3: a post-translational writer on human health[J]. J Mol Med, 2022, 100(10): 1387-1403.
ČAVAL T, ALISSON-SILVA F, SCHWARZ F. Roles of glycosylation at the cancer cell surface: opportunities for large scale glycoproteomics[J]. Theranostics, 2023, 13(8): 2605-2615.
LI S D, QI Y, HUANG Y R, et al. Exosome-derived SNHG16 sponging miR-4500 activates HUVEC angiogenesis by targeting GALNT1 via PI3K/Akt/mTOR pathway in hepatocellular carcinoma[J]. J Physiol Biochem, 2021, 77(4): 667-682.
LIU S Y, SHUN C T, HUNG K Y, et al. Mucin glycosylating enzyme GALNT2 suppresses malignancy in gastric adenocarcinoma by reducing MET phosphorylation[J]. Oncotarget, 2016, 7(10): 11251-11262.
LIU C, LI Z, XU L, et al. GALNT6 promotes breast cancer metastasis by increasing mucin-type O-glycosylation of α2M[J]. Aging, 2020, 12(12): 11794-11811.
PENG X D, CHEN X R, ZHU X T, et al. GALNT6 knockdown inhibits the proliferation and migration of colorectal cancer cells and increases the sensitivity of cancer cells to 5-FU[J]. J Cancer, 2021, 12(24): 7413-7421.
LI H W, LIU M B, JIANG X, et al. GALNT14 regulates ferroptosis and apoptosis of ovarian cancer through the EGFR/mTOR pathway[J]. Future Oncol, 2022, 18(2): 149-161.
MAO C Z, ZHUANG S M, XIA Z J, et al. Pan-cancer analysis of GALNTs expression identifies a prognostic of GALNTs feature in low grade glioma[J]. J Leukoc Biol, 2022, 112(4): 887-899.
RODRIGUEZ E, BOELAARS K, BROWN K, et al. Analysis of the glyco-code in pancreatic ductal adenocarcinoma identifies glycan-mediated immune regulatory circuits[J]. Commun Biol, 2022, 5(1): 41.
MEIJLINK F, CURRAN T, MILLER A D, et al. Removal of a 67-base-pair sequence in the noncoding region of protooncogene fos converts it to a transforming gene[J]. Proc Natl Acad Sci U S A, 1985, 82(15): 4987-4991.
HASSAN N, GREGSON C L, TANG H T, et al. Rare and common variants in GALNT3 may affect bone mass independently of phosphate metabolism[J]. J Bone Miner Res, 2023, 38(5): 678-691.
GUO L W, LI D, LI M T, et al. Variant in GALNT3 gene linked with reduced coronary artery disease risk in Chinese population[J]. DNA Cell Biol, 2017, 36(7): 529-534.
WANG Y K, LI S J, ZHOU L L, et al. GALNT3 protects against vascular calcification by reducing oxidative stress and apoptosis of smooth muscle cells[J]. Eur J Pharmacol, 2023, 939: 175447.
GUO L W, WANG L Y, LI H F, et al. Down regulation of GALNT3 contributes to endothelial cell injury via activation of p38 MAPK signaling pathway[J]. Atherosclerosis, 2016, 245: 94-100.
BENNETT E P, MANDEL U, CLAUSEN H, et al. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family[J]. Glycobiology, 2012, 22(6): 736-756.
PELUSO G, TIAN E, ABUSLEME L, et al. Loss of the disease-associated glycosyltransferase Galnt3 alters Muc10 glycosylation and the composition of the oral microbiome[J]. J Biol Chem, 2020, 295(5): 1411-1425.
NYGAARD M B, HERLIHY A S, JEANNEAU C, et al. Expression of the O-glycosylation enzyme GalNAc-T3 in the equatorial segment correlates with the quality of spermatozoa[J]. Int J Mol Sci, 2018, 19(10): 2949.
BAGDONAITE I, PALLESEN E M, YE Z L, et al. O-glycan initiation directs distinct biological pathways and controls epithelial differentiation[J]. EMBO Rep, 2020, 21(6): e48885.
ONITSUKA K, SHIBAO K, NAKAYAMA Y, et al. Prognostic significance of UDP-N-acetyl-α-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase-3 (GalNAc-T3) expression in patients with gastric carcinoma[J]. Cancer Sci, 2003, 94(1): 32-36.
WANG Z Q, BACHVAROVA M, MORIN C, et al. Role of the polypeptide N-acetylgalactosaminyltransferase 3 in ovarian cancer progression: possible implications in abnormal mucin O-glycosylation[J]. Oncotarget, 2014, 5(2): 544-560.
LUO D, FANG M Y, SHAO L, et al. The EMT-related genes GALNT3 and OAS1 are associated with immune cell infiltration and poor prognosis in lung adenocarcinoma[J]. Front Biosci, 2023, 28(10): 271.
SHIBAO K, IZUMI H, NAKAYAMA Y, et al. Expression of UDP-N-acetyl-α-D-galactosamine-polypeptide galNAc N-acetylgalactosaminyl transferase-3 in relation to differentiation and prognosis in patients with colorectal carcinoma[J]. Cancer, 2002, 94(7): 1939-1946.
MOCHIZUKI Y, ITO K, IZUMI H, et al. Expression of polypeptide N-acetylgalactosaminyl transferase-3 and its association with clinicopathological factors in thyroid carcinomas[J]. Thyroid, 2013, 23(12): 1553-1560.
BARKEER S, CHUGH S, KARMAKAR S, et al. Novel role of O-glycosyltransferases GALNT3 and B3GNT3 in the self-renewal of pancreatic cancer stem cells[J]. BMC Cancer, 2018, 18(1): 1157.
LIU B, PAN S M, XIAO Y, et al. LINC01296/miR-26a/GALNT3 axis contributes to colorectal cancer progression by regulating O-glycosylated MUC1 via PI3K/AKT pathway[J]. J Exp Clin Cancer Res, 2018, 37(1): 316.
SUN L X, SUN W, SONG H B, et al. MiR-885-5p inhibits proliferation and metastasis by targeting IGF2BP1 and GALNT3 in human intrahepatic cholangiocarcinoma[J]. Mol Carcinog, 2020, 59(12): 1371-1381.
ISHIKAWA M, KITAYAMA J, NARIKO H, et al. The expression pattern of UDP-N-acetyl-α-D-galactosamine: polypeptide N-acetylgalactosaminyl transferase-3 in early gastric carcinoma[J]. J Surg Oncol, 2004, 86(1): 28-33.
PARK M S, YANG A Y, LEE J E, et al. GALNT3 suppresses lung cancer by inhibiting myeloid-derived suppressor cell infiltration and angiogenesis in a TNFR and c-MET pathway-dependent manner[J]. Cancer Lett, 2021, 521: 294-307.
ALOBAIDI N K, ALWAN A F, AL-REKABI A N. Assessment of LAG3 and GALNT11 gene expression in patients with chronic lymphocytic leukemia and their impact on disease progression[J]. Biochem Cell Arch, 2021, 21(1): 809-818.
PATSOS G, HEBBE-VITON V, ROBBE-MASSELOT C, et al. O-glycan inhibitors generate aryl-glycans, induce apoptosis and lead to growth inhibition in colorectal cancer cell lines[J]. Glycobiology, 2009, 19(4): 382-398.
SONG L N, LINSTEDT A D. Inhibitor of ppGalNAc-T3-mediated O-glycosylation blocks cancer cell invasiveness and lowers FGF23 levels[J]. eLife, 2017, 6: e24051.
CHENG D, CHU F F, LIANG F, et al. Downregulation of circ-RAPGEF5 inhibits colorectal cancer progression by reducing the expression of polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3)[J]. Environ Toxicol, 2024, 39(8): 4249-4260.
TAHERIAZAM A, BAYANZADEH S D, HEYDARI FARAHANI M, et al. Non-coding RNA-based therapeutics in cancer therapy: an emphasis on Wnt/β-catenin control[J]. Eur J Pharmacol, 2023, 951: 175781.
ROBINSON E L, PORT J D. Utilization and potential of RNA-based therapies in cardiovascular disease[J]. JACC Basic Transl Sci, 2022, 7(9): 956-969.
KHAN M I, HOSSAIN M I, HOSSAIN M K, et al. Recent progress in nanostructured smart drug delivery systems for cancer therapy: a review[J]. ACS Appl Bio Mater, 2022, 5(3): 971-1012.
NARIMATSU Y, JOSHI H J, YANG Z, et al. A validated gRNA library for CRISPR/Cas9 targeting of the human glycosyltransferase genome[J]. Glycobiology, 2018, 28(5): 295-305.
... 在GALNT家族成员中,GALNT3参与多种生理过程,并且已发现其表达异常与人类癌症进展相关,如结肠癌、肺癌、胆囊癌、前列腺癌、胰腺癌等[12-14].但相比GALNT家族中的其他成员,目前对GALNT3在肿瘤中的研究相对较少,并且也没有综述系统归纳过GALNT3与肿瘤发生发展的关系.而本课题组近期发现,GALNT3在弥漫性大B细胞淋巴瘤(diffuse large B cell lymphoma,DLBCL)中高表达,并且与DLBCL的预后密切相关,推测GALNT3不仅可以在实体瘤中发挥作用,也与血液肿瘤的发生发展有关.该文综述了GALNT3在人体中主要发挥的生理功能,重点讨论了该分子与多种癌症预后的关系,以及影响肿瘤细胞增殖、侵袭和转移的分子机制,并关注了GALNT3在DLBCL预后中发挥的作用.最后,该文介绍了目前靶向GALNT3的抗肿瘤药物研究,同时针对靶向糖基化在肿瘤治疗中的前景与挑战进行了探讨,并提出了未来新药研发的可行方向,以期为多种癌症的临床治疗提供更有效的策略和手段. ...
0
1
... 在GALNT家族成员中,GALNT3参与多种生理过程,并且已发现其表达异常与人类癌症进展相关,如结肠癌、肺癌、胆囊癌、前列腺癌、胰腺癌等[12-14].但相比GALNT家族中的其他成员,目前对GALNT3在肿瘤中的研究相对较少,并且也没有综述系统归纳过GALNT3与肿瘤发生发展的关系.而本课题组近期发现,GALNT3在弥漫性大B细胞淋巴瘤(diffuse large B cell lymphoma,DLBCL)中高表达,并且与DLBCL的预后密切相关,推测GALNT3不仅可以在实体瘤中发挥作用,也与血液肿瘤的发生发展有关.该文综述了GALNT3在人体中主要发挥的生理功能,重点讨论了该分子与多种癌症预后的关系,以及影响肿瘤细胞增殖、侵袭和转移的分子机制,并关注了GALNT3在DLBCL预后中发挥的作用.最后,该文介绍了目前靶向GALNT3的抗肿瘤药物研究,同时针对靶向糖基化在肿瘤治疗中的前景与挑战进行了探讨,并提出了未来新药研发的可行方向,以期为多种癌症的临床治疗提供更有效的策略和手段. ...