1 |
VAN DEN STEEN P, RUDD P M, DWEK R A, et al. Concepts and principles of O-linked glycosylation[J]. Crit Rev Biochem Mol Biol, 1998, 33(3): 151-208.
|
2 |
ESMAIL S, MANOLSON M F. Advances in understanding N-glycosylation structure, function, and regulation in health and disease[J]. Eur J Cell Biol, 2021, 100(7/8): 151186.
|
3 |
WANDALL H H, NIELSEN M A I, KING-SMITH S, et al. Global functions of O-glycosylation: promises and challenges in O-glycobiology[J]. FEBS J, 2021, 288(24): 7183-7212.
|
4 |
GARAY Y C, CEJAS R B, LORENZ V, et al. Polypeptide N-acetylgalactosamine transferase 3: a post-translational writer on human health[J]. J Mol Med, 2022, 100(10): 1387-1403.
|
5 |
ČAVAL T, ALISSON-SILVA F, SCHWARZ F. Roles of glycosylation at the cancer cell surface: opportunities for large scale glycoproteomics[J]. Theranostics, 2023, 13(8): 2605-2615.
|
6 |
MAGALHÃES A, DUARTE H O, REIS C A. The role of O-glycosylation in human disease[J]. Mol Aspects Med, 2021, 79: 100964.
|
7 |
LI S D, QI Y, HUANG Y R, et al. Exosome-derived SNHG16 sponging miR-4500 activates HUVEC angiogenesis by targeting GALNT1 via PI3K/Akt/mTOR pathway in hepatocellular carcinoma[J]. J Physiol Biochem, 2021, 77(4): 667-682.
|
8 |
LIU S Y, SHUN C T, HUNG K Y, et al. Mucin glycosylating enzyme GALNT2 suppresses malignancy in gastric adenocarcinoma by reducing MET phosphorylation[J]. Oncotarget, 2016, 7(10): 11251-11262.
|
9 |
LIU C, LI Z, XU L, et al. GALNT6 promotes breast cancer metastasis by increasing mucin-type O-glycosylation of α2M[J]. Aging, 2020, 12(12): 11794-11811.
|
10 |
PENG X D, CHEN X R, ZHU X T, et al. GALNT6 knockdown inhibits the proliferation and migration of colorectal cancer cells and increases the sensitivity of cancer cells to 5-FU[J]. J Cancer, 2021, 12(24): 7413-7421.
|
11 |
LI H W, LIU M B, JIANG X, et al. GALNT14 regulates ferroptosis and apoptosis of ovarian cancer through the EGFR/mTOR pathway[J]. Future Oncol, 2022, 18(2): 149-161.
|
12 |
MARIMUTHU S, BATRA S K, PONNUSAMY M P. Pan-cancer analysis of altered glycosyltransferases confers poor clinical outcomes[J]. Clin Transl Discov, 2022, 2(2): e100.
|
13 |
MAO C Z, ZHUANG S M, XIA Z J, et al. Pan-cancer analysis of GALNTs expression identifies a prognostic of GALNTs feature in low grade glioma[J]. J Leukoc Biol, 2022, 112(4): 887-899.
|
14 |
RODRIGUEZ E, BOELAARS K, BROWN K, et al. Analysis of the glyco-code in pancreatic ductal adenocarcinoma identifies glycan-mediated immune regulatory circuits[J]. Commun Biol, 2022, 5(1): 41.
|
15 |
MEIJLINK F, CURRAN T, MILLER A D, et al. Removal of a 67-base-pair sequence in the noncoding region of protooncogene fos converts it to a transforming gene[J]. Proc Natl Acad Sci U S A, 1985, 82(15): 4987-4991.
|
16 |
HO B B, BERGWITZ C. FGF23 signalling and physiology[J]. J Mol Endocrinol, 2021, 66(2): R23-R32.
|
17 |
HASSAN N, GREGSON C L, TANG H T, et al. Rare and common variants in GALNT3 may affect bone mass independently of phosphate metabolism[J]. J Bone Miner Res, 2023, 38(5): 678-691.
|
18 |
ITO N, FUKUMOTO S. Congenital hyperphosphatemic conditions caused by the deficient activity of FGF23[J]. Calcif Tissue Int, 2021, 108(1): 104-115.
|
19 |
GUO L W, LI D, LI M T, et al. Variant in GALNT3 gene linked with reduced coronary artery disease risk in Chinese population[J]. DNA Cell Biol, 2017, 36(7): 529-534.
|
20 |
WANG Y K, LI S J, ZHOU L L, et al. GALNT3 protects against vascular calcification by reducing oxidative stress and apoptosis of smooth muscle cells[J]. Eur J Pharmacol, 2023, 939: 175447.
|
21 |
GUO L W, WANG L Y, LI H F, et al. Down regulation of GALNT3 contributes to endothelial cell injury via activation of p38 MAPK signaling pathway[J]. Atherosclerosis, 2016, 245: 94-100.
|
22 |
BENNETT E P, MANDEL U, CLAUSEN H, et al. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family[J]. Glycobiology, 2012, 22(6): 736-756.
|
23 |
RAGHU D, MOBLEY R J, SHENDY N A M, et al. GALNT3 maintains the epithelial state in trophoblast stem cells[J]. Cell Rep, 2019, 26(13): 3684-3697.e7.
|
24 |
PELUSO G, TIAN E, ABUSLEME L, et al. Loss of the disease-associated glycosyltransferase Galnt3 alters Muc10 glycosylation and the composition of the oral microbiome[J]. J Biol Chem, 2020, 295(5): 1411-1425.
|
25 |
NYGAARD M B, HERLIHY A S, JEANNEAU C, et al. Expression of the O-glycosylation enzyme GalNAc-T3 in the equatorial segment correlates with the quality of spermatozoa[J]. Int J Mol Sci, 2018, 19(10): 2949.
|
26 |
BAGDONAITE I, PALLESEN E M, YE Z L, et al. O-glycan initiation directs distinct biological pathways and controls epithelial differentiation[J]. EMBO Rep, 2020, 21(6): e48885.
|
27 |
ONITSUKA K, SHIBAO K, NAKAYAMA Y, et al. Prognostic significance of UDP-N-acetyl-α-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase-3 (GalNAc-T3) expression in patients with gastric carcinoma[J]. Cancer Sci, 2003, 94(1): 32-36.
|
28 |
KITADA S, YAMADA S, KUMA A, et al. Polypeptide N-acetylgalactosaminyl transferase 3 independently predicts high-grade tumours and poor prognosis in patients with renal cell carcinomas[J]. Br J Cancer, 2013, 109(2): 472-481.
|
29 |
WANG Z Q, BACHVAROVA M, MORIN C, et al. Role of the polypeptide N-acetylgalactosaminyltransferase 3 in ovarian cancer progression: possible implications in abnormal mucin O-glycosylation[J]. Oncotarget, 2014, 5(2): 544-560.
|
30 |
LUO D, FANG M Y, SHAO L, et al. The EMT-related genes GALNT3 and OAS1 are associated with immune cell infiltration and poor prognosis in lung adenocarcinoma[J]. Front Biosci, 2023, 28(10): 271.
|
31 |
SHIBAO K, IZUMI H, NAKAYAMA Y, et al. Expression of UDP-N-acetyl-α-D-galactosamine-polypeptide galNAc N-acetylgalactosaminyl transferase-3 in relation to differentiation and prognosis in patients with colorectal carcinoma[J]. Cancer, 2002, 94(7): 1939-1946.
|
32 |
MOCHIZUKI Y, ITO K, IZUMI H, et al. Expression of polypeptide N-acetylgalactosaminyl transferase-3 and its association with clinicopathological factors in thyroid carcinomas[J]. Thyroid, 2013, 23(12): 1553-1560.
|
33 |
BARKEER S, CHUGH S, KARMAKAR S, et al. Novel role of O-glycosyltransferases GALNT3 and B3GNT3 in the self-renewal of pancreatic cancer stem cells[J]. BMC Cancer, 2018, 18(1): 1157.
|
34 |
LIU B, PAN S M, XIAO Y, et al. LINC01296/miR-26a/GALNT3 axis contributes to colorectal cancer progression by regulating O-glycosylated MUC1 via PI3K/AKT pathway[J]. J Exp Clin Cancer Res, 2018, 37(1): 316.
|
35 |
SUN L X, SUN W, SONG H B, et al. MiR-885-5p inhibits proliferation and metastasis by targeting IGF2BP1 and GALNT3 in human intrahepatic cholangiocarcinoma[J]. Mol Carcinog, 2020, 59(12): 1371-1381.
|
36 |
ISHIKAWA M, KITAYAMA J, NARIKO H, et al. The expression pattern of UDP-N-acetyl-α-D-galactosamine: polypeptide N-acetylgalactosaminyl transferase-3 in early gastric carcinoma[J]. J Surg Oncol, 2004, 86(1): 28-33.
|
37 |
PARK M S, YANG A Y, LEE J E, et al. GALNT3 suppresses lung cancer by inhibiting myeloid-derived suppressor cell infiltration and angiogenesis in a TNFR and c-MET pathway-dependent manner[J]. Cancer Lett, 2021, 521: 294-307.
|
38 |
PANG X C, LI H J, GUAN F, et al. Multiple roles of glycans in hematological malignancies[J]. Front Oncol, 2018, 8: 364.
|
39 |
OLIVEIRA T, ZHANG M F, JOO E J, et al. Glycoproteome remodeling in MLL-rearranged B-cell precursor acute lymphoblastic leukemia[J]. Theranostics, 2021, 11(19): 9519-9537.
|
40 |
SUPRUNIUK K, RADZIEJEWSKA I. MUC1 is an oncoprotein with a significant role in apoptosis (Review)[J]. Int J Oncol, 2021, 59(3): 68.
|
41 |
ALOBAIDI N K, ALWAN A F, AL-REKABI A N. Assessment of LAG3 and GALNT11 gene expression in patients with chronic lymphocytic leukemia and their impact on disease progression[J]. Biochem Cell Arch, 2021, 21(1): 809-818.
|
42 |
PATSOS G, HEBBE-VITON V, ROBBE-MASSELOT C, et al. O-glycan inhibitors generate aryl-glycans, induce apoptosis and lead to growth inhibition in colorectal cancer cell lines[J]. Glycobiology, 2009, 19(4): 382-398.
|
43 |
SONG L N, LINSTEDT A D. Inhibitor of ppGalNAc-T3-mediated O-glycosylation blocks cancer cell invasiveness and lowers FGF23 levels[J]. eLife, 2017, 6: e24051.
|
44 |
KIM Y K. RNA therapy: current status and future potential[J]. Chonnam Med J, 2020, 56(2): 87-93.
|
45 |
CHENG D, CHU F F, LIANG F, et al. Downregulation of circ-RAPGEF5 inhibits colorectal cancer progression by reducing the expression of polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3)[J]. Environ Toxicol, 2024, 39(8): 4249-4260.
|
46 |
ZHANG X Y, XIE K, ZHOU H H, et al. Role of non-coding RNAs and RNA modifiers in cancer therapy resistance[J]. Mol Cancer, 2020, 19(1): 47.
|
47 |
TAHERIAZAM A, BAYANZADEH S D, HEYDARI FARAHANI M, et al. Non-coding RNA-based therapeutics in cancer therapy: an emphasis on Wnt/β-catenin control[J]. Eur J Pharmacol, 2023, 951: 175781.
|
48 |
ROBINSON E L, PORT J D. Utilization and potential of RNA-based therapies in cardiovascular disease[J]. JACC Basic Transl Sci, 2022, 7(9): 956-969.
|
49 |
PAUNOVSKA K, LOUGHREY D, DAHLMAN J E. Drug delivery systems for RNA therapeutics[J]. Nat Rev Genet, 2022, 23(5): 265-280.
|
50 |
PARK H, OTTE A, PARK K. Evolution of drug delivery systems: from 1950 to 2020 and beyond[J]. J Control Release, 2022, 342: 53-65.
|
51 |
KHAN M I, HOSSAIN M I, HOSSAIN M K, et al. Recent progress in nanostructured smart drug delivery systems for cancer therapy: a review[J]. ACS Appl Bio Mater, 2022, 5(3): 971-1012.
|
52 |
NARIMATSU Y, JOSHI H J, YANG Z, et al. A validated gRNA library for CRISPR/Cas9 targeting of the human glycosyltransferase genome[J]. Glycobiology, 2018, 28(5): 295-305.
|