上海交通大学学报(医学版), 2024, 44(2): 145-160 doi: 10.3969/j.issn.1674-8115.2024.02.001

论著 · 基础研究

烟酰胺代谢相关基因与骨关节炎的关系探索

邓青松,1,2,3, 张长青1,2,3, 陶诗聪,1,2

1.上海交通大学医学院附属第六人民医院骨科,上海 200233

2.上海交通大学医学院附属第六人民医院临床医学院,上海 200233

3.上海交通大学医学院附属第六人民医院上海市四肢显微外科研究所,上海 200233

Exploration of the relationship between nicotinamide metabolism-related genes and osteoarthritis

DENG Qingsong,1,2,3, ZHANG Changqing1,2,3, TAO Shicong,1,2

1.Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China

2.Clinical Medical College of Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China

3.Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China

通讯作者: 陶诗聪,电子信箱:sctao@shsmu.edu.cn

编委: 吴洋

收稿日期: 2023-08-07   接受日期: 2023-11-30  

基金资助: 国家自然科学基金.  81802226.  81871834.  82072530.  82372566
上海市浦江人才计划.  2019PJD038
上海市“医苑新星”青年医学人才培养资助计划
上海交通大学医学院“双百人”项目.  20220017
上海市第六人民医院优秀人才培育项目.  ynyq202101

Corresponding authors: TAO Shicong, E-mail:sctao@shsmu.edu.cn.

Received: 2023-08-07   Accepted: 2023-11-30  

作者简介 About authors

邓青松(1998—),男,硕士生;电子信箱:dqs1229@163.com。 E-mail:dqs1229@163.com

摘要

目的·利用生物信息学方法探索骨关节炎与烟酰胺代谢相关基因之间的关系,找到具有诊断价值和治疗潜力的关键基因。方法·以“Osteoarthritis”为检索词,在GEO数据库中获取GSE12021、GSE55235和GSE55457数据集,将GSE55457作为验证集。去除GSE12021和GSE55235数据集的批次效应后,得到标准化的合并数据集,将其作为训练集,并在训练集中筛选出差异表达基因(differentially expressed genes,DEGs)。在GeneCards数据库和MSigDB数据库中获取所有烟酰胺代谢相关基因(nicotinamide metabolism-related genes,NMRGs)。将DEGs与NMRGs取交集,得到烟酰胺代谢相关差异表达基因(nicotinamide metabolism-related differentially expressed genes,NMRDEGs)。对训练集进行基因集富集分析(gene set enrichment analysis,GSEA),对NMRDEGs进行基因本体(Gene Ontology,GO)、京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)分析。通过LASSO(least absolute shrinkage and selection operator)和支持向量机(support vector machine,SVM)分析筛选出NMRDEGs关键基因,构建骨关节炎诊断模型,并用验证集GSE55457进行验证。通过单样本基因集富集分析(single sample gene set enrichment analysis,ssGSEA)分析免疫细胞的浸润类型。通过DGIdb数据库、ENCORI数据库和CHIPBase数据库对关键基因的mRNA进行相互作用网络和药物小分子预测。通过干扰小RNA(small interfering RNA,siRNA)敲降软骨细胞内NMRDEGs关键基因,用实时荧光定量聚合酶链反应(real-time fluorogenic quantitative polymerase chain reaction,RT-qPCR)检测关键基因敲降对软骨形成相关基因表达的影响。结果·发现了NAMPT、TIPARP等7个NMRDEGs。GO和KEGG分析富集到核因子κB信号通路和正向调节白细胞介素-1介导的信号通路等。GSEA富集到缺氧诱导因子-1转录因子通路(Hif1 Tfpathway)和多配体蛋白聚糖1(syndecan 1)通路等信号通路。LASSO分析和SVM分析共同筛选得到NPAS2、TIPARPNAMPT关键基因并构建了骨关节炎诊断模型,验证集检验提示诊断模型诊断效果具有高准确度。ssGSEA免疫浸润分析的结果显示,巨噬细胞等15种免疫细胞存在显著差异(均P<0.05)。找到了7个针对关键基因的潜在药物小分子,19种与关键基因相互作用且上游基因与下游基因数量之和大于10的miRNA,19种与关键基因结合且上游基因与下游基因数量之和大于7的转录因子,27个聚类数>19的RNA结合蛋白。RT-qPCR结果显示,关键基因敲降会降低软骨形成相关基因的表达。结论·NPAS2、TIPARPNAMPT为烟酰胺代谢相关的关键基因,可据此构建骨关节炎诊断模型。

关键词: 骨关节炎 ; 烟酰胺代谢 ; 生物信息学 ; 诊断模型 ; 列线图

Abstract

Objective ·To explore the relationship between osteoarthritis and nicotinamide metabolism-related genes using bioinformatics analysis, and identify key genes with diagnostic value and therapeutic potential. Methods ·By using "Osteoarthritis" as a search term, GSE12021, GSE55235, and GSE55457 were obtained from the GEO database, with GSE55457 being used as the validation set. After removing batch effects from the GSE12021 and GSE55235 datasets, the standardized combined dataset was obtained and used as the training dataset. Differentially expressed genes (DEGs) were identified from the training dataset. All nicotinamide metabolism-related genes (NMRGs) were obtained from the GeneCards and MSigDB databases. The intersection of DEGs and NMRGs was taken to obtain nicotinamide metabolism-related differentially expressed genes (NMRDEGs). Gene set enrichment analysis (GSEA) was performed on the training dataset, while gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analysis were performed on NMRDEGs. Key genes were selected by using least absolute shrinkage and selection operator (LASSO) and support vector machine (SVM) analysis in NMRDEGs to build an osteoarthritis diagnosis model which was validated by using the GSE55457 dataset. Single sample gene set enrichment analysis (ssGSEA) was used to analyze the immune cell infiltration type. Interactions networks and drug molecule predictions were obtained for these key genes' mRNA with the DGIdb, ENCORI, and CHIPBase databases. siRNA was used to knock down the key genes in chondrocytes, and then real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of chondrogenesis-related genes. Results ·Seven NMRDEGs, including NAMPT, TIPARP, were discovered. GO and KEGG analysis enriched some signaling pathways, such as nuclear factor-κB signaling pathway and positive regulation of interleukin-1-mediated signaling pathway. GSEA enriched pathways such as Hif1 Tfpathway and syndecan 1 pathway. Key genes NPAS2, TIPARP, and NAMPT were identified through LASSO and SVM analysis, and used to construct an osteoarthritis diagnostic model. The validated results showed that the diagnostic model had high accuracy. Immune infiltration analysis results obtained by ssGSEA showed significant differences (all P<0.05) in 15 types of immune cells, including macrophages. Seven potential small molecules targeting key genes were identified, along with 19 miRNAs with the sum of upstream and downstream >10, 19 transcription factors with upstream and downstream >7, and 27 RNA binding proteins with clusterNum >19. The results of RT-qPCR showed that knocking down key genes reduced the expression of chondrogenesis-related genes. Conclusion ·Through bioinformatics analysis, key genes related to nicotinamide metabolism, NPAS2, TIPARP, and NAMPT, are discovered, and an osteoarthritis diagnostic model is constructed.

Keywords: osteoarthritis ; nicotinamide metabolism ; bioinformatics ; diagnostic model ; nomogram

PDF (5348KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

邓青松, 张长青, 陶诗聪. 烟酰胺代谢相关基因与骨关节炎的关系探索. 上海交通大学学报(医学版)[J], 2024, 44(2): 145-160 doi:10.3969/j.issn.1674-8115.2024.02.001

DENG Qingsong, ZHANG Changqing, TAO Shicong. Exploration of the relationship between nicotinamide metabolism-related genes and osteoarthritis. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2024, 44(2): 145-160 doi:10.3969/j.issn.1674-8115.2024.02.001

骨关节炎(osteoarthritis,OA)是一种常见的关节软骨退行性疾病,临床表现为关节疼痛、肿胀、活动困难,甚至导致残疾。随着老龄化和肥胖人数不断增加,OA的患病率也稳步上升1,目前已影响全球5亿多人口,给个人和社会都带来了沉重负担2。长期以来,OA的临床治疗侧重于改善关节疼痛症状。近年来,OA的防治策略已转向早期预防,在关节发生大规模破坏前阻止或延缓OA的进展,因此迫切需要了解和识别OA的潜在生物标志物和治疗靶点。

烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD+)及其衍生物烟酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate,NADP+)在哺乳动物体内是常见的辅酶,是许多细胞内过程的重要辅助因子,参与了多种生理功能,特别是能量代谢和氧化还原平衡3。在将烟酰胺转换为NAD+的过程中,烟酰胺磷酸核糖基转移酶(nicotinamide phosphoribosyltransferase,NAMPT)是限速酶,催化烟酰胺形成烟酰胺单核苷酸(nicotinamide mononucleotide,NMN),然后通过烟酰胺单核苷酸腺苷转移酶将NMN转化为NAD+[4]。NAMPT/NAD+的代谢在许多疾病的病理生理过程中发挥重要作用。例如,全身性NAMPT和脂肪细胞特异性NAMPT可以调节肥胖发展的过程;NAMPT参与了2型糖尿病的发病机制和糖尿病并发症的发展过程,NMN和烟酰胺核糖在改善β细胞功能和细胞稳态、葡萄糖代谢和应激反应方面可能发挥作用;NAD+/NADH或NADP+/NADPH的不平衡会破坏细胞稳态,导致衰老和一些退行性疾病等5-6

目前研究表明,NAMPT/NAD+在OA进展的分解代谢中可能扮演重要角色7-8;但关于烟酰胺代谢在OA疾病中作用的研究较少。明确烟酰胺代谢在OA中的作用,对OA的治疗和预防都具有重要意义。基于此,本研究通过生物信息学方法结合OA相关GEO数据集和烟酰胺代谢相关基因,对烟酰胺代谢在OA进展中的分子机制进行多层次、多方面、高效且直观的阐述,以期明确OA进展中烟酰胺代谢的作用机制,为OA的预防、早期诊断、治疗和药物研发提供新的思路和理论支持。

1 资料与方法

1.1 数据下载

通过“GEOquery”R包9从GEO数据库(http://www.nebi.nlm.nih.gov/geo/)下载OA相关数据集GSE1202110、GSE5523511和GSE5545711,将GSE55457作为验证集。这些数据集中的样本均来自人类的滑膜。GSE55235和GSE55457的芯片注释平台为GPL96;而GSE12021芯片平台有GPL96和GPL97,仅选择GPL96平台注释。数据集GSE12021包含10例OA样本和9例对照样本,数据集GSE55235包含10例OA样本和10例对照样本,数据集GSE55457包含10例OA样本和10例对照样本。

在GeneCards数据库12中以“Nicotinamide Metabolism”作为搜索关键词收集30个烟酰胺代谢相关基因(nicotinamide metabolism-related genes,NMRGs)。在MSigDB数据库13以关键词“Nicotinamide Metabolism”搜索,未得到相关结果;遂以“Nicotinamide”为关键词,挑选出所有NMRGs。将MSigDB与GeneCards中得到的基因取并集,得到155个NMRGs。

用R包sva14对数据集GSE12021和GSE55235进行去批次处理后得到合并后的GEO数据集,并将其作为训练集,其中包含了20例OA样本和19例对照样本。最后,通过R包limma15对训练集和验证集进行注释探针的标准化和归一化处理。

1.2 烟酰胺代谢相关差异表达基因

根据训练集的样本分组情况,用R包limma15对OA组和对照组中的基因进行差异分析。设定|logFC|>1,其中logFC为log2(Fold Change)的简称,且调整后P值(adj.P)<0.05为差异表达基因(differentially expressed genes,DEGs)的阈值。将训练集的DEGs与NMRGs取交集,得到烟酰胺代谢相关差异表达基因(nicotinamide metabolism-related differentially expressed genes,NMRDEGs),差异分析结果通过R包ggplot2绘制火山图。

1.3 基因本体和通路富集分析

用R包clusterProfiler16对NMRDEGs进行基因本体(Gene Ontology,GO)和京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)注释分析,条目筛选标准为adj.P<0.1且错误发现率(false discovery rate,FDR;q值)<0.25,adj.P矫正方法为Benjamini-Hochberg。用Cytoscape对分析结果进行可视化展示。

1.4 基于对照分组的基因集富集分析

用R包clusterProfiler根据logFC值对训练集所有基因进行基因集富集分析(gene set enrichment analysis,GSEA)。GSEA分析中所使用的参数如下:种子为2023,计算次数为1 000,每个基因集最少含有的基因数为10,最多含有的基因数为500。在MSigDB数据库17中获取c2.all.v7.5.1.symbols.gmt基因集进行GSEA分析,筛选标准为adj.P<0.05且FDR值<0.25。

1.5 OA诊断模型的构建

为得到NMRDEGs的诊断模型,用glmnet包18、参数family="binomial"和十折交叉验证执行LASSO(least absolute shrinkage and selection operator)回归19,并运行1 000个周期以防止过度拟合。riskScore=Coefficientkey genei×mRNA Expression(key genei)。通过支持向量机(support vector machine,SVM)算法构建SVM模型,并基于准确率最高和错误率最低的基因数量筛选NMRDEGs。之后再选取LASSO和SVM分析共同筛选得到的关键基因用于后续分析。

对关键基因进行Logistic回归分析并构建Logistic回归模型,根据Logistic回归分析结果用R包rms构建列线图20。用决策曲线分析(decision curve analysis,DCA)图评价Logistics回归模型的准确性和分辨力,并用R包ggDCA21绘制DCA图对Logistic回归模型的效果进行评估。用R包pROC绘制Logistic回归模型的受试者操作特征(receiver operating characteristic,ROC)曲线并计算ROC曲线下的面积(area under the curve,AUC)。最后,对关键基因进行功能相似性分析并绘制箱线图。

1.6 基于诊断模型评分分组的GSEA分析

通过GSEA分析训练集关键基因诊断模型高低风险组间全部基因的表达和参与的生物学过程、影响的细胞组分以及分子功能之间的联系。GSEA筛选标准为adj.P<0.05且FDR值<0.25。

1.7 单样本基因集富集分析

用单样本基因集富集分析(single sample gene set enrichment analysis,ssGSEA)算法22量化28种免疫细胞在训练集中浸润的相对丰度。

1.8 mRNA相互作用网络和药物小分子预测

用DGIdb数据库23预测与关键基因(mRNA)相互作用的潜在药物或小分子化合物,用Cytoscape可视化mRNA-drugs相互作用网络。用ENCORI数据库24预测与基因相互作用的miRNA和RNA结合蛋白(RNA binding protein,RBP),以至少3个网站中均有作用为筛选标准,并绘制mRNA-miRNA、mRNA-RBP相互作用网络。通过CHIPBase数据库(Version 3.0)25查找与关键基因结合的转录因子(transcription factor)并用Cytoscape可视化mRNA-TF相互作用网络。

1.9 体外细胞实验和实时荧光定量PCR检测

将人软骨细胞(C28/I2,德国默克)按照2×105个/孔的密度接种在6孔板中,按照EZ Trans RNA转染试剂(货号AC04L051,中国李记生物)的说明书分别转染针对关键基因的干扰小RNA(small interfering RNA,siRNA)(中国和元生物)。siRNA序列详见表1。用TRIzol(美国赛默飞)提取转染后软骨细胞的RNA,按照反转录试剂盒说明书(货号11141ES,中国翌圣生物)和实时荧光定量聚合酶链反应(real-time fluorogenic quantitative polymerase chain reaction,RT-qPCR)说明书(货号11204ES,中国翌圣生物)检测软骨形成相关基因聚集蛋白聚糖(aggrecan,ACAN)和Y染色体性别决定区-盒转录因子9(sex-determining region of Y chromosome-box transcription factor 9,SOX9)的表达。引物序列详见表2

表1   siRNA序列

Tab 1  Sequences for siRNA

siRNASense (5'→3')Antisense (5'→3')
siNPAS2CAAAGGAAUUUCCAACUUAUGTTCAUAAGUUGGAAAUUCCUUUGTT
siNAMPTGCAGGACUUGCUCUAAUUAAATTUUUAAUUAGAGCAAGUCCUGCTT
siTIPARPCCAAGAGAACGGAAUUGAAAUTTAUUUCAAUUCCGUUCUCUUGGTT

新窗口打开| 下载CSV


表2   RT-qPCR引物序列

Tab 2  Primer sequences for RT-qPCR

PrimerForward primer (5'→3')Reverse primer (5'→3')
β-actinCCTCTATGCCAACACAGTAGCCACCAATCCACACAG
ACANTGGAGACAAGGATGAGTTTCCGGCGAAGCAGTACACATCATA
SOX9AACACCTTGAGCCTTAAAACGGATTTCATCTCCTTTGCTTGC

新窗口打开| 下载CSV


1.10 统计学分析

利用R软件4.2.0进行数据处理与分析,定量数据以±s形式表示。2组间比较采用t检验或Wilcoxon秩和检验。通过Spearman相关性分析计算不同分子之间的相关系数。P<0.05表示差异具有统计学意义。

2 结果

2.1 烟酰胺代谢相关差异表达基因分析

去除了OA数据集GSE12021和GSE55235的批次效应,获得合并后的GEO数据集,将其作为训练集,并通过主成分分析(principal component analysis,PCA)图比较批次效应去除前后的数据集,结果显示基本消除了训练集中样本的批次效应(图1)。

图1

图1   去除批次效应和主成分分析

Note: A. PCA plot of the merged datasets before batch effect removal. B. PCA plot of the merged dataset after batch effect removal.

Fig 1   Batch effect removal and PCA


对OA组与对照组之间基因表达值的差异进行分析,得到DEGs 387个(图2A)。将DEGs和NMRGs取交集(图2B),得到7个NMRDEGs(TIPARP、CDKN1A、NPAS2、NAMPT、IL1R1、PTGS2HSD11B2)。分析并比较NMRDEGs在训练集和验证集中的表达差异,结果显示7个NMRDEGs在训练集和验证集的OA组与正常组之间差异显著(均P<0.05),表达趋势一致(图2C、D)。

图2

图2   DEGs分析

Note: A. Volcano plot of DEGs analysis in the OA group and the control group in the training dataset. B. Venn diagram of DEGs and NMRGs in the training dataset. C. Group comparison chart of NMRDEGs in the training dataset. D. Group comparison chart of NMRDEGs in the validation set GSE55457. P<0.05, P<0.01, P=0.000, comparison between the control group and the OA group.

Fig 2   DEGs expression analysis


2.2 GOKEGG富集分析

对7个NMRDEGs进行GO和KEGG富集分析,并将结果根据包含分子数量和logFC大小绘制成网络图(图3)。结果显示,7个NMRDEGs富集到了以下信号通路:正向调节白细胞介素-1介导的信号通路(positive regulation of interleukin-1-mediated signaling pathway)、对异种生物刺激的反应(response to xenobiotic stimulus)、基因表达的昼夜节律调控(circadian regulation of gene expression)、对非离子渗透压力的反应(response to non-ionic osmotic stress)、细胞对非离子渗透压力的反应(cellular response to non-ionic osmotic stress)、核因子κB信号通路(nuclear factor-κB signaling pathway,NF-κB signaling pathway)、人类巨细胞病毒感染(human cytomegalovirus infection)、小细胞肺癌(small cell lung cancer)、催产素信号通路(oxytocin signaling pathway)。

图3

图3   NMRDEGsGOKEGG富集分析

Note: A. The results of GO enrichment analysis combined with difference analysis results of NMRDEGs logFC network diagram display. B. The pathway KEGG enrichment analysis results of NMRDEGs combined with the difference analysis results of logFC network diagram display.

Fig 3   GO and KEGG enrichment analysis for NMRDEGs


2.3 基于疾病对照分组的GSEA分析

为了确定不同组中所有基因的表达差异对OA在训练集中的影响,通过基因GSEA研究了训练集中所有基因的表达与涉及的生物相关功能和信号通路。结果显示,训练集中的糖皮质激素受体通路(glucocorticoid receptor pathway)(图4A)、缺氧诱导因子-1(hypoxia inducible factor 1,HIF-1)转录因子通路(HIF-1 transcriptional factor pathway,Hif1 Tfpathway)(图4B)和多配体蛋白聚糖1通路(syndecan 1 pathway)(图4C)得到显著富集。

图4

图4   训练集的GSEA分析

Note: A. Glucocorticoid receptor pathway. B. Hif1 Tfpathway. C. Syndecan 1 pathway. NES—normalized enrichment score; FDR—false discovery rate.

Fig 4   GSEA for training dataset


2.4 OA诊断模型的构建

为了明确这7个NMRDEGs在OA诊断中的价值,采用LASSO回归分析构建NMRDEGs的OA诊断模型,选用最简单模型中对应的4个基因(TIPARP、NPAS2、NAMPTHSD11B2)用于后续分析(图5A、B)。随后,基于7个NMRDEGs和SVM算法构建了SVM模型,选择具有最高准确度(图5C)和最低错误率(图5D)的基因数量。结果表明,当基因数量为4个时(NPAS2、IL1R1、TIPARP、NAMPT),SVM模型具有最高准确度和最低错误率。对2种算法得到的基因进行交集运算,得到3个基因(NPAS2、TIPARP、NAMPT),将其定义为关键基因(图5E)并进行了功能相似性分析(图5F)。分析结果提示,基因NPAS2的功能相似性评分最高,随后依次是TIPARPNAMPT

图5

图5   LASSO模型与SVM模型的交集

Note: A. LASSO regressor trajectories for NMRDEGs. B. LASSO regression diagnostic model diagram. C. The number of genes with the highest accuracy rate obtained by the SVM algorithm. D. The number of genes with the lowest error rate obtained by the SVM algorithm. E. Venn diagram of the intersection of SVM and LASSO models. F. Boxplot of functional similarity analysis of key genes.

Fig 5   Intersection of LASSO and SVM models


对训练集关键基因进行了单因素Logistic回归分析和多因素Logistic回归分析,构建Logistic回归模型并绘制森林图(图6A、B)。计算预测值评分公式:riskScore=NPAS2×(-3.949)+TIPARP×(-3.457)+NAMPT×(-0.761)。为判断模型的诊断能力,对训练集和验证集上的关键基因进行列线图分析,并绘制Logistic预测模型的列线图(图6C、D)。用Logistic预测值的Logistic回归模型分别对训练集和验证集进行预后校准曲线(calibration)分析并绘制校准曲线图(图7A、B),结果显示训练集和验证集的拟合曲线与预测曲线都存在较高的重合度,表明Logistic诊断模型的诊断效果良好。接着用DCA图评估了训练集(图7C)和验证集(图7D)中Logistic预测值的回归模型在诊断中的作用,结果显示模型的预测曲线能稳定高于All线和None线,显示预测模型效果好。此外,为了分析关键基因(NPAS2、TIPARP、NAMPT)在训练集和验证集中Logistic回归模型的线性预测值(linear predictors)的诊断价值,使用3个关键基因的线性预测值与Logistic回归模型相结合,绘制训练集和验证集的ROC曲线。ROC曲线的结果表明,在训练集中(图7E),基因NPAS2、TIPARPNAMPT的诊断效果具有高准确度(AUC>0.9),而Logistic线性预测值的诊断效果最佳(AUC=0.989)。在验证集中(图7F),基因TIPARP具有高准确度(AUC>0.9),基因NPAS2、NAMPT和Logistic模型具有一定准确度(0.7<AUC<0.9)。

图6

图6   OA的诊断模型构建

NoteA. The key genes are included in the forest plot of the single factor Logistic regression model. B. The key genes are included in the forest plot of the multi-factor Logistic regression model. C. The nomogram of the key genes and Logistic predictive scoring model in the training dataset. D. The nomogram of the key genes and Logistic predictive value scoring model in the validation set GSE55457.

Fig 6   Diagnostic model of OA


图7

图7   OA诊断模型的验证分析

Note: A. Calibration plot of the Logistic model in the training dataset. B. Calibration plot of the Logistic model in the validation set GSE55457. C. DCA plot of the Logistic model in the training dataset. D. DCA plot of the Logistic model in the validation set GSE55457. E. The ROC curve of the Logistic model in the training dataset. F. The ROC curve of the Logistic model in the validation set GSE55457. FPR—false positive rate.

Fig 7   Validation analysis of OA diagnostic model


2.5 基于诊断模型得分分组的GSEA分析

为了确定训练集高风险组和低风险组的Logistic诊断模型差异对OA样本中所有基因和生物过程表达的影响,通过GSEA分析了训练集中OA样本的基因表达和生物过程的关系。结果显示,高风险组和低风险组中的基因在化学渗透偶联的呼吸电子传递ATP合成和通过解偶联蛋白产生热量(respiratory electron transport ATP synthesis by chemiosmotic coupling and heat production by uncoupling proteins)(图8A)、干扰素α/β信号转导(interferon α/β signaling)(图8B)、糖酵解和糖原异生(glycolysis and gluconeogenesis)(图8C)等通路中显著富集。

图8

图8   基于高低风险分层的GSEA

Note: A. Respiratory electron transport ATP synthesis by chemiosmotic coupling and heat production by uncoupling proteins. B. Interferon α/β signaling. C. Glycolysis and gluconeogenesis.

Fig 8   GSEA based on high-low risk stratification


2.6 ssGSEA免疫浸润分析

为了探究OA组和对照组在训练集中免疫浸润的差异,使用ssGSEA算法计算对照组和OA组样本中28种免疫细胞浸润丰度,然后用Mann-Whitney U检验分析其在不同组中的丰度差异。图9表明,在训练集中,15种免疫细胞类型的浸润丰度存在显著差异(均P<0.05),分别为2型辅助性T细胞(type 2 T cells,Th2细胞)、Th1细胞、滤泡辅助T细胞、调节性T细胞(regulatory T cells,Tregs)、自然杀伤细胞(natural killer cells,NK细胞)、髓源性抑制细胞(myeloid-derived suppressor cells,MDSCs)、巨噬细胞、未成熟树突状细胞、未成熟B细胞、γδT细胞、嗜酸性粒细胞、效应记忆CD4T细胞、中央记忆CD4T细胞、活化CD8T细胞和活化B细胞。

图9

图9   训练集的ssGSEA算法免疫浸润分析

Note: Group comparison chart showing the differences in immune infiltration between the OA group and the control group in the training dataset. P<0.05, P<0.01, P=0.000.

Fig 9   Training dataset immune infiltration analysis by ssGSEA algorithm


2.7 药物小分子预测与mRNA相互作用网络

使用DGIdb数据库预测与关键基因(NPAS2、TIPARP、NAMPT)相互作用的潜在药物或小分子化合物,筛选出reference count>2的小分子药物,找到7个潜在药物小分子(图10A);用ENCORI数据库中的mRNA-miRNA数据预测与关键基因相互作用的miRNA,筛选出其上游基因与下游基因数量之和大于10的miRNA,有19种(图10B)。此外还通过ChIPBase3.0数据库查找与关键基因结合的转录因子,筛选出上游基因与下游基因数量之和大于7的19种转录因子(图10C);通过ENCORI数据库中的mRNA-RBP筛选出与关键基因相互作用的RBP,得到27个聚类数大于19的RBP(图10D)。

图10

图10   mRNA相互作用网络与药物预测

Note: A. mRNA-drug interaction network between key genes and small molecules. B. mRNA-miRNA interaction network of key genes and miRNA. C. mRNA-TF interaction network of key genes and transcription factors. D. The mRNA-RBP interaction network of key genes and RBP.

Fig 10   mRNA interactome network and drug prediction


2.8 体外细胞关键基因表达验证

对3个关键基因(NPAS2、TIPARP、NAMPT)在软骨细胞中的作用进行验证。对软骨细胞分别转染针对3个关键基因的siRNA(siNPAS2、siTIPARP、siNAMPT),敲降软骨细胞中NPAS2、TIPARPNAMPT的表达,然后通过RT-qPCR检测关键基因敲降后对软骨形成相关基因ACANSOX9的影响。实验结果显示敲降3个关键基因的表达抑制软骨形成相关基因ACANSOX9的表达(图11),与生物信息学分析结果一致,提示NPAS2TIPARPNAMPT在OA中有重要作用。

图11

图11   关键基因敲降后软骨形成相关基因 ACANSOX9mRNA表达水平

NoteP=0.000, P<0.01, compared with the control group.

Fig 11   The relative mRNA expression of ACAN and SOX9 after knocking down key genes


3 讨论

NAD+是参与细胞氧化还原反应的必需辅酶,其合成可以通过从头合成途径、Preiss-Handler途径和补救途径,而在哺乳动物中主要是通过补救途径合成6。在NAD+的补救合成过程中,NAMPT的功能非常重要,是该过程中的限速酶,可以通过影响NAD+的生物合成影响NAD依赖性酶的功能,参与调节细胞能量代谢。NAMPT有2种不同的形式:细胞内NAMPT(iNAMPT)和细胞外NAMPT(eNAMPT)。iNAMPT存在于细胞质和细胞核中,而eNAMPT由脂肪细胞和免疫细胞等分泌到细胞外5。eNAMPT除了酶促功能外,还具有细胞因子样活性,有促炎作用,能够激活细胞外信号调节核因子NF-κB活化,以及细胞因子如肿瘤坏死因子(tumor necrosis factor,TNF)-α、白细胞介素(interleukin,IL)-6、IL-1β等的产生26。NAMPT/NAD+信号转导的促炎作用在关节炎模型中得到了验证,类风湿关节炎和OA中均有NAMPT过度表达27。研究发现,在OA患者血浆和滑膜液以及小鼠炎症滑膜组织中,NAMPT表达升高8。在IL-1β刺激后,软骨细胞产生的eNAMPT能够增强基质金属蛋白酶(matrix metalloproteinase,MMP)的表达,介导软骨细胞的促降解和促炎症表型7;eNAMPT还能促进促炎细胞因子的分泌,调节破骨细胞、单核细胞、巨噬细胞等几种关节炎相关细胞的分化,加快OA的进程428。本研究也显示,NAMPT作为OA诊断模型的关键基因之一,在OA的发病及进展中有重要作用。

除了NAMPT,关键基因NPAS2和TIPARP在OA中发挥的作用也同样重要。神经元PAS结构域蛋白2(neuronal PAS domain protein 2,NPAS2)是一种调节哺乳动物昼夜节律的转录因子,能够通过与脑和肌肉ARNT样蛋白1(brain and muscle arnt-like protein 1,BMAL1)形成二聚体参与昼夜节律的调节29。研究表明,以NAD(H)和NADP(H)为代表的细胞还原氧化状态调节CLOCK/BMAL1和NPAS2/BMAL1的转录活性,NAD还原形式能够提高NPAS2的DNA结合活性,而氧化形式降低了NPAS2的DNA结合活性30。TCCD诱导的多聚腺苷二磷酸核糖聚合酶(TCDD inducible poly-ADP-ribose polymerase,TIPARP)是一种单ADP-核糖基转移酶,是PARP家族成员,受芳烃受体(aryl hydrocarbon receptor,AHR)调控,其详细功能及其在调节转录中的作用尚不清楚。有研究表明,TIPARP是HIF-1的靶标,充当缺氧信号转导的负反馈调节剂,能够以ADP-核糖基化依赖性方式形成球形核体并募集HIF-1α和E3泛素连接酶HUWE1,导致HIF-1α的泛素化和降解31。此外研究32发现,OA中的TIPARP表达显著降低。

在本研究筛选出的另外4个NMRDEGs中,IL-1受体1型(interleukin 1 receptor type 1,IL1R1)是炎症因子IL-1β发挥作用的重要受体,在OA的炎症进展和疼痛中发挥重要作用33。11-β羟基类固醇脱氢酶2(11-β hydroxysteroid dehydrogenase 2,HSD11B2)是一种负责将皮质醇转化为非活性形式可的松的微粒体酶复合物,能够调节皮质醇水平。前列腺素内过氧化物合酶2(prostaglandin-endoperoxide synthase 2,PTGS2),又称环氧酶2(cyclooxygenase-2,COX-2),参与前列腺素的形成。在OA中,PTGS2、MMP1、MMP3、MMP9等一些分解代谢因子在HIF-2α的调节下介导了软骨破坏34。同时PTGS2的表达也受到NADPH的调控,NADPH能够通过抑制上游基因NF-κB,抑制PTGS2的表达35。CDKN1A又名p21,是细胞周期蛋白依赖性激酶抑制剂,能够阻滞细胞周期,同时细胞内p21常作为细胞衰老的生物标志物。在OA患者的软骨细胞中p21的转录和蛋白表达水平显著提高,进而诱导衰老软骨细胞分泌大量的衰老相关分泌表型,进一步加重OA36

在GSEA数据分析中,本研究富集到了糖皮质激素受体通路、缺氧诱导因子-1转录因子通路和多配体蛋白聚糖1通路。在人体中,糖皮质激素(glucocorticoids,GCs)是一类天然激素,在炎症方面有重要作用。糖皮质激素受体(glucocorticoid receptor,GR)是GCs的作用主要受体,当GR结合GCs后,GR构象发生变化,相关蛋白解离,GR转运到细胞核中,在细胞核中与靶基因启动子中的糖皮质激素受体反应元件(glucocorticoid responsive elements,GREs)结合,与正性GREs结合时导致基因上调,与负性GREs结合时导致基因下调。也正是由于GR信号作用的复杂性,导致了GCs用于治疗OA时会带来一些不良反应,进而也催生了一些GR选择性激动剂,如Mapracorat37。此外,GR还能与其他转录因子结合。如巨噬细胞通过toll样受体识别病原体从而触发NF-κB和激活蛋白-1(activator protein‑1,AP-1)效应转录因子的激活,促进一些促炎基因的表达;而GR能够与NF-κB和AP-1相互作用,抑制这些基因的转录38-39。然而在OA中,软骨细胞的GR水平下降,不仅减轻了对炎症因子生成的抑制,而且降低了对金属蛋白酶和其他细胞外基质(extracellular matrix,ECM)破坏酶合成的控制,加快了软骨细胞的衰老和软骨降解40-41。HIF-1α是公认的维持正常软骨细胞功能的保护因素,能够维持无氧糖酵解、诱导适当的自噬和抑制关节软骨的ECM降解来促进软骨稳态,稳定关节软骨表型和维持软骨细胞活力42-43。此外,HIF-1α能够正向调节SOX9、ACAN的表达,同时抑制COL10A1和MMP13的表达,以促进软骨细胞分化和基质合成44-45。研究46-47发现,软骨细胞中HIF-1α的水平与OA的严重程度呈负相关,OA中HIF-1α的降解增加导致了软骨稳态失衡;同时,增加的HIF-2α诱导软骨细胞中分解代谢因子的表达,促进软骨细胞凋亡,加剧炎症反应,从而加速了OA的软骨变性。Syndecan1是一种跨膜细胞表面的蛋白聚糖,能够与细胞外基质分子、生长因子和细胞因子相互作用,还与MMP共同维持ECM的稳态平衡,参与组织重塑或病理变化48。研究发现在OA中,syndecan1的表达是增加的。类似于syndecan1在创面修复中扮演的角色,在OA早期,软骨细胞存在类似于组织修复的改变,增加了syndecan1、Ⅱa型胶原和SOX9的产生;但不同于创面修复,这种改变在OA中无法逆转OA的进程49-50

近年来,机器学习结合生物信息学方法在疾病诊断和严重程度的判断中得到了越来越多的应用。ZHANG等51对多个GEO数据库的OA相关基因进行了综合分析得到DEGs,并通过Cytoscape中的cytoHubba分析DEGs蛋白相互作用网络中节点的度中心性(degree)、边缘渗透组件(edge percolated component,EPC)和紧密中心性(closeness),筛选出8个OA潜在的诊断标志物(POSTN,MMP2,CTSG,ELANE,COL3A1,MPO,COL1A1COL1A2),然后通过SVM算法建立了OA预测的诊断模型。HAN等52通过Cytoscape中的cytoHubba计算差异基因蛋白相互作用网络中的度中心性、最大邻域组件(maximum neighborhood component,MNC)、紧密中心性和最大团中心性(maximal clique centrality,MCC)选取关键基因,并通过SVM算法构建诊断模型。在本研究中,我们通过对7个NMRDEGs构建LASSO和SVM诊断模型,并对2种算法得到的基因取交集得到3个关键基因,然后对关键基因进行了单因素Logistic回归分析和多因素Logistic回归分析,构建了OA诊断模型,结果显示构建的诊断模型的诊断效果良好。

ssGSEA免疫浸润分析提示巨噬细胞、NK细胞、Th1细胞和Tregs等在OA的进展过程中发挥了重要作用。巨噬细胞是一种参与先天免疫的细胞,在接受到不同的刺激后会极化为不同的亚型,根据其作用效果将其大致分为促炎型(M1)和抑炎型(M2)。巨噬细胞在γ干扰素(interferon-γ,IFN-γ)、TNF-α、粒细胞-巨噬细胞集落刺激因子(granulocyte-macrophage colony stimulating factor,GM-CSF)和脂多糖的诱导下可以极化为M1型,并产生一些促炎细胞因子(如IL-6、IL-1β和TNF-α)以及多种组织降解酶,加重软骨和骨骼的破坏。M2型巨噬细胞能够产生抗炎细胞因子IL-10、转化生长因子(transforming growth factor,TGF)-β和IL-1受体拮抗剂,缓解炎症,抑制软骨细胞凋亡,促进软骨修复。NK细胞是一种先天细胞毒性免疫细胞,能够杀死病毒感染、异常或转化的细胞。有研究提示NK细胞可能也参与了OA的进展过程。研究53-54发现在OA患者的滑液中主要是CD56+/CD16- NK细胞,这种NK细胞主要表达促炎因子颗粒酶A,可能与OA患者滑液中增加的促炎细胞因子相关。然而,NK细胞在OA中的作用尚不清楚,是否可以通过调控NK细胞更好地抑制OA进展,还有待进一步研究。与健康个体的滑膜相比,OA患者的滑膜含有更多的炎症免疫细胞,如Th1细胞和Tregs55-56。在IL-12的刺激下,幼稚CD4 T细胞分化为Th1细胞,产生IL-2、IFN-γ、TNF-α、淋巴毒素和GM-CSF57-58。目前研究表明,Th1细胞在OA患者的外周血中不会发生显著变化,而在OA患者的滑液中Th1细胞增加,滑膜中能够找到Th1细胞;说明Th1细胞在OA患者的滑液和滑膜中蓄积,在OA的发病机制中发挥作用5659-60。Tregs是一种抗炎调节T细胞,在OA的复杂炎症级联反应中起重要作用,能够分泌IL-10和TGF-β等抗炎细胞因子,抑制炎症免疫细胞,如M1巨噬细胞和Th1细胞。在OA中,Tregs反应性降低导致IL-10释放减少,加快关节炎进展61

与关键基因相互作用的潜在药物或小分子化合物的预测结果中包括雌激素和环孢素。环孢素是钙调磷酸酶抑制剂的一种,可以通过靶向作用于T细胞,抑制TNF-α、IFN等一些细胞因子的分泌,发挥免疫调节作用62。目前,环孢素在类风湿性关节炎中的治疗主要用于氨甲蝶呤等一些一线治疗药物耐药或不耐受的患者,在全身性幼年特发性关节炎的治疗中也有应用,但用于OA治疗却鲜有报道63-64。雌激素对软骨代谢的影响已被广泛研究,但雌激素在调节关节代谢稳态中的作用复杂。一方面雌激素可以增强软骨细胞糖胺聚糖的合成,抑制软骨细胞中COX-2的表达,保护细胞免受氧化损伤。另一方面,在全身缺乏雌激素的情况下,局部应用雌激素不能阻止软骨退化,在一些小关节中软骨表达较高的雌激素受体会加重绝经后妇女OA的症状65-67。因此,雌激素在OA治疗中的作用有待进一步研究。

综上所述,本研究通过生物信息学方法发现了烟酰胺代谢与OA存在密切联系,发现了可能参与OA发病及进展的3个关键基因NPAS2、TIPARPNAMPT,并构建了OA的关键基因诊断模型,对关键基因有相互作用的潜在药物和小分子化合物、miRNA、转录因子和RBP进行了预测。此外,还对关键基因进行了实验验证。虽然烟酰胺代谢相关基因在OA发病中具体作用机制还未阐明,但通过此次分析能够更快、更有效地找到与疾病相关联的作用分子,对后续烟酰胺代谢相关基因与OA关系的基础研究具有一定的参考价值。

作者贡献声明

邓青松负责数据分析和论文撰写,张长青负责论文的审阅,陶诗聪负责课题设计及论文修改。所有作者均阅读并同意了最终稿件的提交。

AUTHOR's CONTRIBUTIONS

DENG Qingsong was responsible for data analysis and paper writing. ZHANG Changqing was responsible for paper review. TAO Shicong was responsible for experimental design and paper editing. All authors have read the final manuscript and agreed to the submission.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

All authors disclose no relevant conflict of interests.

参考文献

HUNTER D J, BIERMA-ZEINSTRA S. Osteoarthritis[J]. Lancet, 2019, 393(10182): 1745-1759.

[本文引用: 1]

YAO Q, WU X H, TAO C, et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1): 56.

[本文引用: 1]

REVOLLO J R, GRIMM A A, IMAI S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells[J]. J Biol Chem, 2004, 279(49): 50754-50763.

[本文引用: 1]

TRAVELLI C, COLOMBO G, MOLA S, et al. NAMPT: A pleiotropic modulator of monocytes and macrophages[J]. Pharmacol Res, 2018, 135: 25-36.

[本文引用: 1]

GARTEN A, SCHUSTER S, PENKE M, et al. Physiological and pathophysiological roles of NAMPT and NAD metabolism[J]. Nat Rev Endocrinol, 2015, 11(9): 535-546.

[本文引用: 2]

JOHNSON S, IMAI S. NAD+ biosynthesis, aging, and disease[J]. F1000Res, 2018, 7: 132.

[本文引用: 2]

YANG S, RYU J H, OH H, et al. NAMPT (visfatin), a direct target of hypoxia-inducible factor-2α, is an essential catabolic regulator of osteoarthritis[J]. Ann Rheum Dis, 2015, 74(3): 595-602.

[本文引用: 2]

PRESLE N, POTTIE P, DUMOND H, et al. Differential distribution of adipokines between serum and synovial fluid in patients with osteoarthritis. Contribution of joint tissues to their articular production[J]. Osteoarthritis Cartilage, 2006, 14(7): 690-695.

[本文引用: 2]

DAVIS S, MELTZER P S. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor[J]. Bioinformatics, 2007, 23(14):1846-1847.

[本文引用: 1]

HUBER R, HUMMERT C, GAUSMANN U, et al. Identification of intra-group, inter-individual, and gene-specific variances in mRNA expression profiles in the rheumatoid arthritis synovial membrane[J]. Arthritis Res Ther, 2008, 10(4): R98.

[本文引用: 1]

WOETZEL D, HUBER R, KUPFER P, et al. Identification of rheumatoid arthritis and osteoarthritis patients by transcriptome-based rule set generation[J]. Arthritis Res Ther, 2014, 16(2): R84.

[本文引用: 2]

STELZER G, ROSEN N, PLASCHKES I, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses[J]. Curr Protoc Bioinformatics, 2016, 54: 1.30.1-1.30.33.

[本文引用: 1]

LIBERZON A, BIRGER C, THORVALDSDÓTTIR H, et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection[J]. Cell Syst, 2015, 1(6): 417-425.

[本文引用: 1]

LEEK J T, JOHNSON W E, PARKER H S, et al. The sva package for removing batch effects and other unwanted variation in high-throughput experiments[J]. Bioinformatics, 2012, 28(6): 882-883.

[本文引用: 1]

RITCHIE M E, PHIPSON B, WU D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47.

[本文引用: 2]

YU G, WANG L G, HAN Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5): 284-287.

[本文引用: 1]

LIBERZON A, SUBRAMANIAN A, PINCHBACK R, et al. Molecular signatures database (MSigDB) 3.0[J]. Bioinformatics, 2011, 27(12): 1739-1740.

[本文引用: 1]

YANG L, QU Q, HAO Z, et al. Powerful identification of large quantitative trait loci using genome-wide R/glmnet-based regression[J]. J Hered, 2022, 113(4): 472-478.

[本文引用: 1]

NARALA S, LI S Q, KLIMAS N K, et al. Application of least absolute shrinkage and selection operator logistic regression for the histopathological comparison of chondrodermatitis nodularis helicis and hyperplastic actinic keratosis[J]. J Cutan Pathol, 2021, 48(6): 739-744.

[本文引用: 1]

PARK S Y. Nomogram: an analogue tool to deliver digital knowledge[J]. J Thorac Cardiovasc Surg, 2018, 155(4): 1793.

[本文引用: 1]

SUN L, PANG Y, WANG X, et al. Ablation of gut microbiota alleviates obesity-induced hepatic steatosis and glucose intolerance by modulating bile acid metabolism in hamsters[J]. Acta Pharm Sin B, 2019, 9(4): 702-710.

[本文引用: 1]

XIAO B, LIU L, LI A, et al. Identification and verification of immune-related gene prognostic signature based on ssGSEA for osteosarcoma[J]. Front Oncol, 2020, 10: 607622.

[本文引用: 1]

FRESHOUR S L, KIWALA S, COTTO K C, et al. Integration of the Drug-Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts[J]. Nucleic Acids Res, 2021, 49(D1): D1144-D1151.

[本文引用: 1]

LI J H, LIU S, ZHOU H, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data[J]. Nucleic Acids Res, 2014, 42(D1): D92-D97.

[本文引用: 1]

ZHOU K R, LIU S, SUN W J, et al. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data[J]. Nucleic Acids Res, 2017, 45(D1): D43-D50.

[本文引用: 1]

NAVAS L E, CARNERO A. NAD+ metabolism, stemness, the immune response, and cancer[J]. Signal Transduct Target Ther, 2021, 6(1): 2.

[本文引用: 1]

WANG Q H, LI Y, DOU D Y, et al. Nicotinamide mononucleotide-elicited NAMPT signaling activation aggravated adjuvant-induced arthritis in rats by affecting peripheral immune cells differentiation[J]. Int Immunopharmacol, 2021, 98: 107856.

[本文引用: 1]

NOWELL M, EVANS L, WILLIAMS A. PBEF/NAMPT/visfatin: a promising drug target for treating rheumatoid arthritis?[J]. Future Med Chem, 2012, 4(6): 751-769.

[本文引用: 1]

DIOUM E M, RUTTER J, TUCKERMAN J R, et al. NPAS2: a gas-responsive transcription factor[J]. Science, 2002, 298(5602): 2385-2387.

[本文引用: 1]

BECKER-KRAIL D D, PAREKH P K, KETCHESIN K D, et al. Circadian transcription factor NPAS2 and the NAD+-dependent deacetylase SIRT1 interact in the mouse nucleus accumbens and regulate reward[J]. Eur J Neurosci, 2022, 55(3): 675-693.

[本文引用: 1]

ZHANG L, CAO J, DONG L, et al. TiPARP forms nuclear condensates to degrade HIF-1α and suppress tumorigenesis[J]. Proc Natl Acad Sci USA, 2020, 117(24): 13447-13456.

[本文引用: 1]

SWAHN H, OLMER M, LOTZ M K. RNA-binding proteins that are highly expressed and enriched in healthy cartilage but suppressed in osteoarthritis[J]. Front Cell Dev Biol, 2023, 11: 1208315.

[本文引用: 1]

WYATT L A, NWOSU L N, WILSON D, et al. Molecular expression patterns in the synovium and their association with advanced symptomatic knee osteoarthritis[J]. Osteoarthritis Cartilage, 2019, 27(4): 667-675.

[本文引用: 1]

YANG S, KIM J, RYU J H, et al. Hypoxia-inducible factor-2α is a catabolic regulator of osteoarthritic cartilage destruction[J]. Nat Med, 2010, 16(6): 687-693.

[本文引用: 1]

QIN Y Y, LI M, FENG X, et al. Combined NADPH and the NOX inhibitor apocynin provides greater anti-inflammatory and neuroprotective effects in a mouse model of stroke[J]. Free Radic Biol Med, 2017, 104: 333-345.

[本文引用: 1]

CORYELL P R, DIEKMAN B O, LOESER R F. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis[J]. Nat Rev Rheumatol, 2021, 17(1): 47-57.

[本文引用: 1]

SAVVIDOU O, MILONAKI M, GOUMENOS S, et al. Glucocorticoid signaling and osteoarthritis[J]. Mol Cell Endocrinol, 2019, 480: 153-166.

[本文引用: 1]

SACTA M A, THARMALINGAM B, COPPO M, et al. Gene-specific mechanisms direct glucocorticoid-receptor-driven repression of inflammatory response genes in macrophages[J]. Elife, 2018, 7: e34864.

[本文引用: 1]

MIHAILIDOU C, PANAGIOTOU C, KIARIS H, et al. Crosstalk between C/EBP homologous protein (CHOP) and glucocorticoid receptor in lung cancer[J]. Mol Cell Endocrinol, 2016, 436: 211-223.

[本文引用: 1]

DIBATTISTA J A, MARTEL-PELLETIER J, ANTAKLY T, et al. Reduced expression of glucocorticoid receptor levels in human osteoarthritic chondrocytes. Role in the suppression of metalloprotease synthesis[J]. J Clin Endocrinol Metab, 1993, 76(5): 1128-1134.

[本文引用: 1]

PELLETIER J P, DIBATTISTA J A, RANGER P, et al. Modulation of the expression of glucocorticoid receptors in synovial fibroblasts and chondrocytes by prostaglandins and NSAIDs[J]. Am J Ther, 1996, 3(2): 115-119.

[本文引用: 1]

ZHANG F J, LUO W, LEI G H. Role of HIF-1α and HIF-2α in osteoarthritis[J]. Joint Bone Spine, 2015, 82(3): 144-147.

[本文引用: 1]

HU S L, ZHANG C W, NI L B, et al. Stabilization of HIF-1α alleviates osteoarthritis via enhancing mitophagy[J]. Cell Death Dis, 2020, 11(6): 481.

[本文引用: 1]

OKADA K, MORI D, MAKII Y, et al. Hypoxia-inducible factor-1 α maintains mouse articular cartilage through suppression of NF-κB signaling[J]. Sci Rep, 2020, 10(1): 5425.

[本文引用: 1]

BOUAZIZ W, SIGAUX J, MODROWSKI D, et al. Interaction of HIF1α and β-catenin inhibits matrix metalloproteinase 13 expression and prevents cartilage damage in mice[J]. Proc Natl Acad Sci USA, 2016, 113(19): 5453-5458.

[本文引用: 1]

ZHANG H, WANG L, CUI J, et al. Maintaining hypoxia environment of subchondral bone alleviates osteoarthritis progression[J]. Sci Adv, 2023, 9(14): eabo7868.

[本文引用: 1]

ZHANG X A, KONG H. Mechanism of HIFs in osteoarthritis[J]. Front Immunol, 2023, 14: 1168799.

[本文引用: 1]

PATTERSON A M, CARTWRIGHT A, DAVID G, et al. Differential expression of syndecans and glypicans in chronically inflamed synovium[J]. Ann Rheum Dis, 2008, 67(5): 592-601.

[本文引用: 1]

KAUFMAN J, CARIC D, VUKOJEVIC K. Expression pattern of Syndecan-1 and HSP-70 in hip tissue of patients with osteoarthritis[J]. J Orthop, 2019, 17: 134-138.

[本文引用: 1]

SALMINEN-MANKONEN H, SÄÄMÄNEN A M, JALKANEN M, et al. Syndecan-1 expression is upregulated in degenerating articular cartilage in a transgenic mouse model for osteoarthritis[J]. Scand J Rheumatol, 2005, 34(6): 469-474.

[本文引用: 1]

ZHANG Y Q, YANG Y, WANG C Z, et al. Identification of diagnostic biomarkers of osteoarthritis based on multi-chip integrated analysis and machine learning[J]. DNA Cell Biol, 2020, 39(12): 2245-2256.

[本文引用: 1]

HAN Y, WU J, GONG Z, et al. Identification and development of a novel 5-gene diagnostic model based on immune infiltration analysis of osteoarthritis[J]. J Transl Med, 2021, 19(1): 522.

[本文引用: 1]

JAIME P, GARCÍA-GUERRERO N, ESTELLA R, et al. CD56+/CD16- natural killer cells expressing the inflammatory protease granzyme A are enriched in synovial fluid from patients with osteoarthritis[J]. Osteoarthritis Cartilage, 2017, 25(10): 1708-1718.

[本文引用: 1]

WANG H, ZENG Y, ZHANG M, et al. CD56brightCD16- natural killer cells are shifted toward an IFN-γ-promoting phenotype with reduced regulatory capacity in osteoarthritis[J]. Hum Immunol, 2019, 80(10): 871-877.

[本文引用: 1]

MORADI B, SCHNATZER P, HAGMANN S, et al. CD4+ CD25⁺/highCD127low/⁻ regulatory T cells are enriched in rheumatoid arthritis and osteoarthritis joints: analysis of frequency and phenotype in synovial membrane, synovial fluid and peripheral blood[J]. Arthritis Res Ther, 2014, 16(2): R97.

[本文引用: 1]

LI Y S, LUO W, ZHU S A, et al. T cells in osteoarthritis: alterations and beyond[J]. Front Immunol, 2017, 8: 356.

[本文引用: 2]

CHEN K, KOLLS J K. T cell-mediated host immune defenses in the lung[J]. Annu Rev Immunol, 2013, 31: 605-633.

[本文引用: 1]

REN W K, LIU G, CHEN S, et al. Melatonin signaling in T cells: functions and applications[J]. J Pineal Res, 2017, 62(3): e12394.

[本文引用: 1]

ZHANG L, LI Y G, LI Y H, et al. Increased frequencies of Th22 cells as well as Th17 cells in the peripheral blood of patients with ankylosing spondylitis and rheumatoid arthritis[J]. PLoS One, 2012, 7(4): e31000.

[本文引用: 1]

DOLHAIN R J E M, van der HEIDEN A N, TER HAAR N T, et al. Shift toward T lymphocytes with a T helper 1 cytokine-secretion profile in the joints of patients with rheumatoid arthritis[J]. Arthritis Rheum, 1996, 39(12): 1961-1969.

[本文引用: 1]

NEES T A, ZHANG J A, PLATZER H, et al. Infiltration profile of regulatory T cells in osteoarthritis-related pain and disability[J]. Biomedicines, 2022, 10(9): 2111.

[本文引用: 1]

KELLY P A, BURCKART G J, VENKATARAMANAN R. Tacrolimus: a new immunosuppressive agent[J]. Am J Health Syst Pharm, 1995, 52(14): 1521-1535.

[本文引用: 1]

KITAHARA K, KAWAI S. Cyclosporine and tacrolimus for the treatment of rheumatoid arthritis[J]. Curr Opin Rheumatol, 2007, 19(3): 238-245.

[本文引用: 1]

BAGRI N K. Cyclosporine for systemic onset juvenile idiopathic arthritis: current stand and future directions[J]. Indian J Pediatr, 2019, 86(7): 576-577.

[本文引用: 1]

MANEIX L, BEAUCHEF G, SERVENT A, et al. 17β-oestradiol up-regulates the expression of a functional UDP-glucose dehydrogenase in articular chondrocytes: comparison with effects of cytokines and growth factors[J]. Rheumatology (Oxford), 2008, 47(3): 281-288.

[本文引用: 1]

CLAASSEN H, SCHÜNKE M, KURZ B. Estradiol protects cultured articular chondrocytes from oxygen-radical-induced damage[J]. Cell Tissue Res, 2005, 319(3): 439-445.

PANG H W, CHEN S H, KLYNE D M, et al. Low back pain and osteoarthritis pain: a perspective of estrogen[J]. Bone Res, 2023, 11(1): 42.

[本文引用: 1]

/