上海交通大学学报(医学版), 2024, 44(5): 641-646 doi: 10.3969/j.issn.1674-8115.2024.05.013

综述

瞬时受体电位香草酸亚型1在急性呼吸窘迫综合征中的作用及研究进展

席宏,1, 沈杰2, 杨谦梓2, 杜海磊3, 罗艳,2

1.山西白求恩医院/山西医学科学院/同济山西医院/山西医科大学第三医院麻醉科,太原 030032

2.上海交通大学医学院附属瑞金医院麻醉科,上海 200025

3.上海交通大学医学院附属瑞金医院胸外科,上海 200025

Role and research progress of transient receptor potential vanilloid-1 in acute respiratory distress syndrome

XI Hong,1, SHEN Jie2, YANG Qianzi2, DU Hailei3, LUO Yan,2

1.Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China

2.Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

3.Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

通讯作者: 罗 艳,电子信箱:ly11087@rjh.com.cn

编委: 邢宇洋

收稿日期: 2023-22-11   接受日期: 2024-05-20   网络出版日期: 2024-05-28

基金资助: 国家自然科学基金.  82272181

Corresponding authors: LUO Yan, E-mail:ly11087@rjh.com.cn.

Received: 2023-22-11   Accepted: 2024-05-20   Online: 2024-05-28

作者简介 About authors

席 宏(1978—),女,满族,副主任医师,博士生;电子信箱:xihong2021@outlook.com。 E-mail:xihong2021@outlook.com

摘要

急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)是由肺内和肺外病因引发的一种严重的、以顽固性低氧血症为显著特征的呼吸系统危重症,起病较急,发病率和死亡率较高。随着全球范围内的呼吸道病毒的流行和变异,ARDS的诊疗也变得更加复杂,因此临床上亟待探索有关ARDS发生发展的分子机制和有效的治疗方法。研究发现,ARDS的发病机制涉及炎症反应及氧化还原反应失衡、内皮细胞功能失调、肺泡毛细血管屏障的破坏、凝血功能异常等多个因素的相互作用。虽然基因组学、蛋白质组学等分子生物学技术的发展已为ARDS的发病机制提供了全新视角,但仍缺乏早期诊断ARDS的生物标志物和针对性治疗ARDS的有效药物。目前,越来越多的研究表明,瞬时受体电位香草酸亚型1(transient receptor potential vanilloid-1,TRPV1;即辣椒素受体)广泛分布于上呼吸道、气道平滑肌、肺泡和肺血管等部位,参与调解气道舒张和收缩、咳嗽反射、炎症和疼痛相关的炎症介质释放,以及呼吸系统对温度、化学物质和机械牵拉等刺激的感知并传递各种生物信号,在呼吸系统疾病中扮演着重要角色,且已成为肺炎、肺水肿、咳嗽、哮喘、急性肺损伤等呼吸系统疾病的研究热点。基于此,该文以脓毒症、创伤性脑损伤和呼吸道病毒引发的ARDS与TRPV1的相关性和分子机制为切入点进行综述,总结了调控TRPV1的表达对ARDS发病进程所发挥的积极作用,旨在为加强ARDS的早期诊断和有效干预措施提供参考。

关键词: 瞬时受体电位香草酸亚型1 ; 急性肺损伤 ; 急性呼吸窘迫综合征 ; 呼吸衰竭 ; 生物标志物

Abstract

Acute respiratory distress syndrome (ARDS) is a severe critical respiratory disease characterized by refractory hypoxemia, which is caused by intrapulmonary and extrapulmonary factors. It has a rapid onset, and high morbidity and mortality. With the global prevalence and mutation of respiratory viruses, the diagnosis and treatment of ARDS have become more complicated, requiring exploration into the molecular mechanisms and effective therapeutic methods of the occurrence and development of ARDS in clinical practice. Researchers have found that the pathogenesis of ARDS involves the interaction of multiple factors, including imbalances in inflammatory responses and redox reactions, dysregulation of endothelial cells, disruption of alveolar-capillary barrier and abnormalities in coagulation function. Although advancements in molecular biology techniques such as genomics and proteomics have provided new insights into the pathogenesis of ARDS, there is still a lack of early diagnostic biomarker and effective drugs targeted for ARDS. At present, more comprehensive and in-depth basic and clinical research is still needed. Increasing evidence suggests that transient receptor potential vanilloid-1 (TRPV1), also known as the capsaicin receptor, plays a crucial role in respiratory system diseases. TRPV1 is widely distributed in the upper respiratory tract, airway smooth muscle, alveoli and pulmonary blood vessels, participating in mediating airway dilation and constriction, cough reflex, and release of inflammatory mediators related to inflammation and pain, as well as sensing and transmitting various biological signals related to temperature, chemical substances and mechanical stress stimuli in the respiratory system. The widespread distribution and diverse physiological functions of TRPV1 make it a research hotspot in the occurrence and development of respiratory system diseases such as pneumonia, pulmonary edema, cough, asthma and acute lung injury. This article reviews the correlation and molecular mechanisms between ARDS caused by sepsis, traumatic brain injury and respiratory viruses with TRPV1, aiming to summarize the positive effects of regulating TRPV1 expression on the pathogenesis of ARDS and provide reference for strengthening early diagnosis and effective intervention measures for ARDS.

Keywords: transient receptor potential vanilloid-1 (TRPV1) ; acute lung injury ; acute respiratory distress syndrome (ARDS) ; respiratory failure ; biomarker

PDF (1262KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

席宏, 沈杰, 杨谦梓, 杜海磊, 罗艳. 瞬时受体电位香草酸亚型1在急性呼吸窘迫综合征中的作用及研究进展. 上海交通大学学报(医学版)[J], 2024, 44(5): 641-646 doi:10.3969/j.issn.1674-8115.2024.05.013

XI Hong, SHEN Jie, YANG Qianzi, DU Hailei, LUO Yan. Role and research progress of transient receptor potential vanilloid-1 in acute respiratory distress syndrome. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2024, 44(5): 641-646 doi:10.3969/j.issn.1674-8115.2024.05.013

急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)是指由感染、创伤、休克等肺内和肺外因素所致的急性、弥漫性、炎症性肺损伤,具有以肺毛细血管通透性增加、肺实质破坏、肺容积减少、肺顺应性降低、肺通气/血流比例失调为主的病理生理特征,表现为呼吸窘迫、顽固性低氧血症、弥漫性肺炎和肺水肿等一系列临床综合征1-2。ARDS的病死率高达40%~50%,是严重威胁人类健康的一种呼吸系统综合征。目前,ARDS的治疗主要为对症支持治疗,尚不能有效提高该类患者的生存率,部分原因在于ARDS发病机制尚不明确、临床上缺乏ARDS的早期确诊指标和基于靶分子的高效治疗药物3。因此,ARDS的分子机制研究和治疗药物的研发一直是临床医师关注的焦点。

瞬时受体电位香草酸亚型1(transient receptor potential vanilloid-1,TRPV1)又称辣椒素受体,是瞬时受体电位(transient receptor potential,TRP)通道家族中被研究和应用最为广泛的成员之一,属于非选择性阳离子通道蛋白,主要在背根神经节、三叉神经和迷走神经细胞中高表达,调控细胞内的钙离子活动、炎症反应和神经免疫反应等4。同时,TRPV1也可在肺泡上皮细胞、气道上皮细胞和平滑肌细胞等非神经细胞中表达,参与气道炎症介质的释放和ARDS发生发展过程的调控5。本文基于既往研究,总结、归纳了TRPV1与脓毒症、创伤性脑损伤(traumatic brain injury,TBI)和呼吸道病毒引发ARDS的相关性和作用机制的最新研究进展,以期为ARDS的精准治疗提供新的思路和方向。

1 ARDS病因、诊治和发病机制的概述

研究6显示ARDS的诱发病因较多,包括败血症、肺炎、胃内容物误吸、严重创伤和吸入有毒物质等传染性和非传染性触发因素,表现为肺部广泛的炎症、肺泡-毛细血管屏障的通透性增加、严重而难以纠正的低氧血症,最终会使患者因呼吸衰竭而危及生命。目前ARDS的诊断标准处于持续更新中,调查显示约2/3的ARDS患者存在有被延误诊断或未被诊断的情况,更无法得到及时治疗7。在2023年更新的ARDS诊断和治疗的指南中,纳入了更多处于早期的ARDS患者,并提出超声可作为ARDS的肺水肿和肺实变的诊断方式;该指南前移了ARDS的治疗关口,有利于ARDS的早期诊断和治疗17。临床上,ARDS的治疗常采用抗生素和激素治疗、营养支持、消化道的应激性溃疡及静脉血栓防治、肺保护性机械通气和俯卧位通气实施等,严重时可采用体外膜肺氧合(extracorporeal membrane oxygenation,ECMO)进行治疗,但目前仍缺乏特效的治疗手段8;这可能因为ARDS发病机制涉及较多因素如炎症反应、凝血功能异常、肺泡毛细血管屏障损伤、血管内皮通透性增加、细胞凋亡、中性粒细胞弹性蛋白酶激活等。尽管已报道了较多针对ARDS发生、发展过程的研究9-11但尚未获得较一致的结论,我们推测该过程可能如下:肺部积聚的炎性因子和炎性介质通过引发单核细胞、巨噬细胞和中性粒细胞等的聚集和浸润,使促炎和抗炎反应失调、肺泡Ⅱ型上皮细胞破裂,致使肺泡-毛细血管屏障受损、肺微血管通透性增加,继而产生弥漫性肺间质和肺泡水肿,影响肺的气体交换,最终发展为ARDS。总之,全身性过度炎症反应是导致ARDS的根本原因,且针对ARDS的治疗应从感染、创伤等因素致病的早期开始;然而,目前临床上尚缺乏对于控制炎症反应、减轻肺毛细血管和肺泡上皮损伤等病理、生理改变的特异而有效的治疗手段。

2 TRPV1的分布和生理功能概述

TRPV1是TRPV家族中第一个被发现的四聚体通道蛋白,在细胞功能、信号通路转导中起了重要作用。该蛋白在心、肝、肺、肾、胰腺、前列腺、大脑和肠道等多种器官和组织中都有表达,与多种疾病的发生密切相关,可感知光、热、机体代谢产物、酸碱度、渗透压、机械牵张等多种信号刺激而被激活,是细胞的传感器和信号整合器412-13

TRPV1主要分布在外周的背根神经节、三叉神经和迷走神经中,对Ca2+、Mg2+、Na+和K+等多种离子具有通透性。当TRPV1被各种信号激活后,细胞内外的离子浓度会发生失衡,进而促进细胞的增殖、凋亡。同时,激活的TRPV1还可促进缓激肽、P物质(substance P,SP)、前列腺素、脂质过氧化物、ATP、神经生长因子(nerve growth factor,NGF)和降钙素基因相关肽(calcitonin gene-related peptide,CGRP)等神经递质的释放,以诱导血管舒张、局部水肿和炎症反应的发生14-15。而神经递质SP和CGRP的释放又能反过来增强TRPV1的表达和炎症反应,形成正反馈调节,引发炎症风暴16。当分布在非神经细胞中的TRPV1被异常刺激激活后,白细胞介素-8(interleukin-8,IL-8)、IL-13和IL-33等炎症介质的表达增加,继而引发肺泡上皮细胞的钙离子内流增加、炎症细胞浸润、肺泡上皮细胞损伤等一系列病理生理变化17。综合上述研究我们发现,TRPV1在神经细胞和非神经源性细胞中发挥着不完全相同的作用。

3 TRPV1在不同病因引发的ARDS中发挥的作用

3.1 TRPV1与脓毒症引发的ARDS

脓毒症引发的ARDS是重症监护室最常见的并发症之一,致死率较高、预后较差,且易导致多器官功能障碍和损害;其分子机制较复杂,与炎症反应失控、免疫调节失衡、血管内皮损伤、细胞凋亡和自噬、氧化应激等诸多因素有关18。尽管有研究19表明,IL-6、血管生成素2、microRNA等与脓毒症引发的ARDS的风险增加相关,可作为其诊断和预后的潜在生物标志物,但尚未有特异性诊断ARDS的单一生物标志物。而一些研究16-17显示,TRPV1作为化学传感器,参与了脓毒症的肺毒性反应,在氧化应激和细胞凋亡等方面发挥着重要作用;如TRPV1被激活后释放的SP、CGRP等递质能改善脓毒症大鼠的低血压和器官衰竭等相关症状,保护其重要器官的灌注、控制感染、减轻肺损伤所致的氧化应激反应,从而降低病死率、改善预后。HU等20在小鼠的体内和体外细胞实验中使用TRPV1激动剂——辣椒素可抑制炎症反应和细胞自噬,给经脂多糖(lipopolysaccharide,LPS)诱导的脓毒症小鼠注射辣椒素可降低炎症因子表达及肺干湿比,并减轻肺水肿,从而降低ARDS的发生率和严重程度。WANG等21的研究发现通过纳米颗粒递送辣椒素到巨噬细胞,可抑制炎症因子IL-6的产生,减轻炎症反应及脓毒症小鼠的肺损伤。JOFFRE等22将另一种TRPV1激动剂N-油酰多巴胺(n-oleoyldopamine,OLDA)注射于脓毒症小鼠体内,发现在脓毒症早期OLDA就起到了抗炎作用,以减轻肺损伤;敲除小鼠中枢神经元的Trpv1后发现OLDA对TRPV1的激动作用消失,但敲除其外周神经系统神经元或髓细胞中的Trpv1后OLDA对TRPV1的激动作用却仍然存在,继而提示OLDA可主要作用于神经细胞的TRPV1,促进巨噬细胞产生抗炎因子IL-10,从而对脓毒症小鼠或金黄色葡萄球菌肺炎小鼠发挥较强的抗炎作用。但还有研究23-24认为,抑制TRPV1也可起到肺保护作用,如TRPV1抑制剂——辣椒平可阻断脓毒症大鼠气道上皮细胞的TRPV1的表达、降低血中的去甲肾上腺素和肾上腺素水平以及减轻炎症反应,改善肺功能,从而降低了脓毒症大鼠24、48 h的病死率。以上研究结果显示,TRPV1的激动剂和抑制剂均可发挥肺保护作用,分析原因可能是与针对脓毒症引发的ARDS病程的不同时期相关,早期激动TRPV1和晚期抑制TRPV1均可起到肺保护作用。一些关于信号通路的机制研究25-27已证明,TRPVI是通过调节核因子-κB(nuclear factor kappa-B,NF-κB)和丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路抑制炎症反应,从而发挥肺保护作用。总之,TRPV1与脓毒症引发的ARDS的研究尚处于初步阶段,所获结论也不尽相同,未来仍需开展更多的研究来验证TRPV1作为ARDS诊疗靶分子的可行性。

3.2 TRPV1TBI引发的ARDS

TBI是全球主要的公共健康问题,由TBI引发的ARDS的发生率约为27%,且ARDS是重度TBI患者入院72 h内死亡的主要病因,可严重影响该类患者的预后和转归28。BELLANI等29研究显示TBI患者发生ARDS的时间有两个高峰期,即行机械通气治疗的第2~3日出现第一个高峰,在第7~8日出现第二个高峰,这与神经炎症、氧化应激、细胞凋亡等病理、生理的进程相关。TBI引发的ARDS的机制是复杂且多因素的,与呼吸系统、神经系统和免疫系统存在直接或间接的相互作用30;且中枢神经系统与呼吸系统之间可通过神经炎症、免疫、内分泌代谢物、微生物和气体交换等途径实现脑-肺的交互作用,导致脑和肺部疾病的共存。因此,探索脑-肺互作的分子机制可为TBI后的ARDS治疗提供重要靶点31。尽管TRPV1在脑内的精确定位仍有争议,但越来越多的研究显示TRPV1存在于中枢突触中,可通过调节突触前末端的神经递质释放及不同脑区突触的功能来影响突触的可塑性32。还有研究33发现,TBI患者的颅内压增高、交感神经兴奋、组织缺血、局部酸性环境、体温升高、炎症等因素都可敏化TRPV1,使其激活并过度表达,同时可使神经细胞释放大量SP、CGRP等神经肽,激活小胶质细胞、星形胶质细胞和肥大细胞脱颗粒,从而引起炎症反应(即神经源性炎症反应)。目前,临床上常采用的抗炎治疗并未对TBI后的ARDS有较明显的疗效,究其原因可能与抗生素治疗未能对神经源性炎症发挥明显作用有关34。同时,敏化和激活的TRPV1可间接引起肺损伤,通过增强肺交感神经兴奋性引起肺血管收缩、肺血流量减少、肺动脉高压、肺毛细血管内皮的结构破坏,导致富含蛋白质的液体渗漏到肺间隙和肺泡,进而产生神经源性肺水肿,这也是在TBI早期就发生ARDS的主要原因35。而如果抑制肺的交感神经活性则可减弱TBI后的TRPV1表达、破坏病理性脑-肺间的串扰、抑制细胞自噬和炎症反应,从而减轻ARDS症状36-37。显然,这种交感神经和TRPV1之间的相互作用表明神经源性炎症反应参与了TBI后ARDS的发病过程,该反应可通过正反馈循环诱发难以控制的炎症风暴,是ARDS患者死亡的主要原因38-39。还有研究40发现,迷走神经节上的TRPV1被激活后释放的神经肽CGRP可降低肺γδ T细胞数量、减弱中性粒细胞的功能,如靶向消融神经元的TRPV1则可提高肺内细菌清除率,是治疗肺部感染和细菌性肺炎的有效途径。近期有研究41-42认为细胞外囊泡(extracellular vesicles,EVs)是TBI诱导ARDS的关键介质,EVs可穿过被破坏的血脑屏障进入外周循环系统,将囊泡内容物(如遗传物质、蛋白质等)递送至靶细胞,以介导脑-肺间的串扰和互作。与脓毒症引发的ARDS相比,TBI引发的ARDS在机制、治疗策略方面不尽相同,神经源性炎症反应和神经免疫是后者发生的主要原因。目前,仅少数基础研究关注了TRPV1与TBI引发的ARDS间的关系,仍需大量的基础和临床研究对TRPV1在TBI引发的ARDS中的作用机制进行探索。

3.3 TRPV1与呼吸道病毒引发的ARDS

呼吸道病毒与ARDS之间的关系较为复杂,一直以来也是医学研究的热点。在呼吸道感染的致病微生物中有70%~80%是呼吸道病毒(如流感病毒、腺病毒、合胞病毒、新冠病毒等),该病毒可引发肺部炎症、肺泡损伤和肺水肿等病理变化43。在病毒感染过程中,TRPV1在肺部组织中的表达有所增加,可进一步加重肺损伤,且部分抗病毒药物也是通过抑制TRPV1的活性来减轻呼吸道病毒感染所致的肺部病理变化。研究44-46表明新冠病毒感染后的严重程度与肺内TRPV1的表达密切相关,阻断TRPV1的表达能改善新型冠状病毒肺炎(corona virus disease 2019,COVID-19)患者的肺水肿症状,究其原因可能是由于TRPV1参与了呼吸系统的痛觉传递、炎症反应、免疫调节和炎症风暴等,影响了ARDS的进程。还有研究47发现TRP通道家族在COVID-19感染患者的不同组织中存在表达和共表达的情况,可能参与了COVID-19相关的炎症、疼痛、发热、嗅觉缺失、呼吸困难、心血管、胃肠道和神经系统等并发症,其中TRPV1与COVID-19感染后的发烧、咳嗽、头疼、消化道症状等关系密切,且抑制TRPV1的表达可改善上述症状。COVID-19感染还可引发嗅觉障碍和认知退化,有动物研究48发现TRPV1和TRPV4存在于嗅觉受体神经元轴突附近,可发生相互作用及共表达,以调控嗅神经元和嗅上皮细胞的再生和嗅觉的恢复。因此,针对TRPV1分子靶点的药物开发将是治疗COVID-19相关ARDS的有效方法49。另有研究50对感染呼吸道合胞病毒(respiratory syncytial virus,RSV)儿童的TRPV1含量和定位进行测定,结果发现支气管上皮细胞中存在较高表达的TRPV1,其可促使上皮细胞内Ca2+浓度增加、神经生长因子(nerve growth factor,NGF)过表达以及气道的高反应性,继而导致患儿发生哮喘和肺囊性纤维化,同时,过度增加的TRPV1还可导致患儿支气管收缩、咳嗽和气道分泌黏液增多,从而增加气道阻塞的风险。还有研究51发现,薄荷醇、樟脑等中草药成分可通过抑制TRPV1的表达来治疗因病毒性感冒引起的发烧、咳嗽、疼痛等症状。总之,TRPV1在呼吸道病毒引发的ARDS中发挥着重要作用。

4 总结与展望

TRPV1具有明确的抗炎、解热、镇痛等作用,是许多疗效较好的中草药的作用靶点,也是新药物研发的热点,靶向调控TRPV1有望为ARDS的防治提供新的策略。由于TRPV1在神经细胞和非神经细胞中的调控方式不同,且在ARDS发展的不同阶段发挥促炎或抗炎的不同作用,因此想要通过调控TRPV1的表达来影响ARDS的发病进程仍需对TRPV1与ARDS的相关性和生物学机制开展更深入的探索。随着ARDS诊断标准的最新修订,新的ARDS流行病学研究有待开展。由于TRPV1分布的广泛性、信号整合的复杂性、在动物模型与人体中表达的差异性以及靶向抑制TRPV1引起高热或灼痛感等不良反应的不可控性,开发靶向调控TRPV1的ARDS治疗药物仍将面临诸多挑战。

作者贡献声明

席宏、罗艳参与了论文的构思,席宏、沈杰、杜海磊参与了文献检索、阅读和论文的写作,罗艳、杨谦梓参与了论文的审阅和修改。所有作者均阅读并同意了最终稿件的提交。

AUTHOR's CONTRIBUTIONS

The review was conceived by XI Hong and LUO Yan. XI Hong, SHEN Jie and DU Hailei searched and read literature, and then drafted the manuscript. LUO Yan and YANG Qianzi contributed to literature review and manuscript revision. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

All authors disclose no relevant conflict of interests.

参考文献

MATTHAY M A, ARABI Y, ARROLIGA A C, et al. A new global definition of acute respiratory distress syndrome[J]. Am J Respir Crit Care Med, 2024, 209(1): 37-47.

[本文引用: 2]

BOS L D J, WARE L B. Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes[J]. Lancet, 2022, 400(10358): 1145-1156.

[本文引用: 1]

GROTBERG J C, REYNOLDS D, KRAFT B D. Management of severe acute respiratory distress syndrome: a primer[J]. Crit Care, 2023, 27(1): 289.

[本文引用: 1]

ZHANG K H, JULIUS D, CHENG Y F. Structural snapshots of TRPV1 reveal mechanism of polymodal functionality[J]. Cell, 2021, 184(20): 5138-5150.e12.

[本文引用: 2]

OZ M, LORKE D E, HOWARTH F C. Transient receptor potential vanilloid 1 (TRPV1)-independent actions of capsaicin on cellular excitability and ion transport[J]. Med Res Rev, 2023, 43(4): 1038-1067.

[本文引用: 1]

GORMAN E A, O'KANE C M, MCAULEY D F. Acute respiratory distress syndrome in adults: diagnosis, outcomes, long-term sequelae, and management[J]. Lancet, 2022, 400(10358): 1157-1170.

[本文引用: 1]

LIU L, WANG Y, ZHANG Y, et al. Comparison of the Montreux definition with the Berlin definition for neonatal acute respiratory distress syndrome[J]. Eur J Pediatr, 2023, 182(4): 1673-1684.

[本文引用: 2]

QADIR N, SAHETYA S, MUNSHI L, et al. An update on management of adult patients with acute respiratory distress syndrome: an official American Thoracic Society Clinical Practice Guideline[J]. Am J Respir Crit Care Med, 2024, 209(1): 24-36.

[本文引用: 1]

LU Q Y, YU S F, MENG X Y, et al. MicroRNAs: important regulatory molecules in acute lung injury/acute respiratory distress syndrome[J]. Int J Mol Sci, 2022, 23(10): 5545.

[本文引用: 1]

WANG K, RONG G Y, GAO Y X, et al. Fluorous-tagged peptide nanoparticles ameliorate acute lung injury via lysosomal stabilization and inflammation inhibition in pulmonary macrophages[J]. Small, 2022, 18(40): 2203432.

WANG K, WANG M Y, LIAO X M, et al. Locally organised and activated Fth1hi neutrophils aggravate inflammation of acute lung injury in an IL-10-dependent manner[J]. Nat Commun, 2022, 13: 7703.

[本文引用: 1]

CAO E H, LIAO M F, CHENG Y F, et al. TRPV1 structures in distinct conformations reveal activation mechanisms[J]. Nature, 2013, 504(7478): 113-118.

[本文引用: 1]

杨维杰, 骆媛, 王永安. 瞬时受体电位通道在呼吸系统疾病中的作用研究进展[J]. 中国药理学与毒理学杂志, 2021, 35(6): 471-480.

[本文引用: 1]

YANG W J, LUO Y, WANG Y A. Research progress in role of transient receptor potential channels in respiratory diseases[J]. Chinese Journal of Pharmacology and Toxicology, 2021, 35(6): 471-480.

[本文引用: 1]

GAO N, LI M, WANG W M, et al. A bibliometrics analysis and visualization study of TRPV1 channel[J]. Front Pharmacol, 2023, 14: 1076921.

[本文引用: 1]

KASHIO M, TOMINAGA M. TRP channels in thermosensation[J]. Curr Opin Neurobiol, 2022, 75: 102591.

[本文引用: 1]

ZHAO R, TSANG S Y. Versatile roles of intracellularly located TRPV1 channel[J]. J Cell Physiol, 2017, 232(8): 1957-1965.

[本文引用: 2]

BENÍTEZ-ANGELES M, MORALES-LÁZARO S L, JUÁREZ-GONZÁLEZ E, et al. TRPV1: structure, endogenous agonists, and mechanisms[J]. Int J Mol Sci, 2020, 21(10): 3421.

[本文引用: 2]

ENGLERT J A, BOBBA C, BARON R M. Integrating molecular pathogenesis and clinical translation in sepsis-induced acute respiratory distress syndrome[J]. JCI Insight, 2019, 4(2): e124061.

[本文引用: 1]

CAO S, LI H, XIN J, et al. Identification of genetic profile and biomarkers involved in acute respiratory distress syndrome[J]. Intensive Care Med, 2024, 50(1): 46-55.

[本文引用: 1]

HU Q, LIU H R, WANG R Y, et al. Capsaicin attenuates LPS-induced acute lung injury by inhibiting inflammation and autophagy through regulation of the TRPV1/AKT pathway[J]. J Inflamm Res, 2024, 17: 153-170.

[本文引用: 1]

WANG R, LI Q, WU P, et al. Fe-capsaicin nanozymes attenuate sepsis-induced acute lung injury via NF-κB signaling[J]. Int J Nanomedicine, 2024, 19: 73-90.

[本文引用: 1]

JOFFRE J, WONG E, LAWTON S, et al. N-Oleoyl dopamine induces IL-10 via central nervous system TRPV1 and improves endotoxemia and sepsis outcomes[J]. J Neuroinflammation, 2022, 19(1): 118.

[本文引用: 1]

ZHANG Q, LUO P, XIA F, et al. Capsaicin ameliorates inflammation in a TRPV1-independent mechanism by inhibiting PKM2-LDHA-mediated Warburg effect in sepsis[J]. Cell Chem Biol, 2022, 29(8): 1248-1259.e6.

[本文引用: 1]

LIU Z H, WANG P W, LU S S, et al. Liquiritin, a novel inhibitor of TRPV1 and TRPA1, protects against LPS-induced acute lung injury[J]. Cell Calcium, 2020, 88: 102198.

[本文引用: 1]

LIU Q H, ZHANG K, FENG S S, et al. Rosavin alleviates LPS-induced acute lung injure by modulating the TLR-4/NF-κB/MAPK singnaling pathways[J]. Int J Mol Sci, 2024, 25(3): 1875.

[本文引用: 1]

ZHOU M, MENG L, HE Q K, et al. Valsartan attenuates LPS-induced ALI by modulating NF-κB and MAPK pathways[J]. Front Pharmacol, 2024, 15: 1321095.

HUANG Q R, LE Y, LI S S, et al. Signaling pathways and potential therapeutic targets in acute respiratory distress syndrome (ARDS)[J]. Respir Res, 2024, 25(1): 30.

[本文引用: 1]

KIM J A, WAHLSTER S, LABUZETTA J N, et al. Focused management of patients with severe acute brain injury and ARDS[J]. Chest, 2022, 161(1): 140-151.

[本文引用: 1]

BELLANI G, LAFFEY J G, PHAM T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries[J]. JAMA, 2016, 315(8): 788-800.

[本文引用: 1]

ZIAKA M, EXADAKTYLOS A. Brain-lung interactions and mechanical ventilation in patients with isolated brain injury[J]. Crit Care, 2021, 25(1): 358.

[本文引用: 1]

LI C Y, CHEN W L, LIN F, et al. Functional two-way crosstalk between brain and lung: the brain-lung axis[J]. Cell Mol Neurobiol, 2023, 43(3): 991-1003.

[本文引用: 1]

MEYFROIDT G, BAGULEY I J, MENON D K. Paroxysmal sympathetic hyperactivity: the storm after acute brain injury[J]. Lancet Neurol, 2017, 16(9): 721-729.

[本文引用: 1]

YANG D X, JING Y, LIU Y L, et al. Inhibition of transient receptor potential vanilloid 1 attenuates blood-brain barrier disruption after traumatic brain injury in mice[J]. J Neurotrauma, 2019, 36(8): 1279-1290.

[本文引用: 1]

CORRIGAN F, MANDER K A, LEONARD A V, et al. Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation[J]. J Neuroinflammation, 2016, 13(1): 264.

[本文引用: 1]

PARPAITE T, CARDOUAT G, MAUROUX M, et al. Effect of hypoxia on TRPV1 and TRPV4 channels in rat pulmonary arterial smooth muscle cells[J]. Pflugers Arch, 2016, 468(1): 111-130.

[本文引用: 1]

Han DW, Oh JE, Lim BJ, et al. Dexmedetomidine attenuates subarachnoid hemorrhage-induced acute lung injury through regulating autophagy and TLR/NF-κB signaling pathway[J]. Korean J Anesthesiol, 2022, 75(6): 518-529.

[本文引用: 1]

MROZEK S, GOBIN J, CONSTANTIN J M, et al. Crosstalk between brain, lung and heart in critical care[J]. Anaesth Crit Care Pain Med, 2020, 39(4): 519-530.

[本文引用: 1]

MEZA R C, ANCATÉN-GONZÁLEZ C, CHIU C Q, et al. Transient receptor potential vanilloid 1 function at central synapses in health and disease[J]. Front Cell Neurosci, 2022, 16: 864828.

[本文引用: 1]

CHAI C Z, HO U C, KUO L T. Systemic inflammation after aneurysmal subarachnoid hemorrhage[J]. Int J Mol Sci, 2023, 24(13): 10943.

[本文引用: 1]

BARAL P, UMANS B D, LI L, et al. Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia[J]. Nat Med, 2018, 24(4): 417-426.

[本文引用: 1]

LU W C, YAN J F, WANG C Y, et al. Interorgan communication in neurogenic heterotopic ossification: the role of brain-derived extracellular vesicles[J]. Bone Res, 2024, 12: 11.

[本文引用: 1]

ZHANG C N, LI F J, ZHAO Z L, et al. The role of extracellular vesicles in traumatic brain injury-induced acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2021, 321(5): L885-L891.

[本文引用: 1]

SHAH R D, WUNDERINK R G. Viral pneumonia and acute respiratory distress syndrome[J]. Clin Chest Med, 2017, 38(1): 113-125.

[本文引用: 1]

FAN E, BEITLER J R, BROCHARD L, et al. COVID-19-associated acute respiratory distress syndrome: is a different approach to management warranted?[J]. Lancet Respir Med, 2020, 8(8): 816-821.

[本文引用: 1]

LIVIERO F, CAMPISI M, MASON P, et al. Transient receptor potential vanilloid subtype 1: potential role in infection, susceptibility, symptoms and treatment of COVID-19[J]. Front Med, 2021, 8: 753819.

HAUDEBOURG A F, PERIER F, TUFFET S, et al. Respiratory mechanics of COVID-19- versus non-COVID-19-associated acute respiratory distress syndrome[J]. Am J Respir Crit Care Med, 2020, 202(2): 287-290.

[本文引用: 1]

THAPA K, VERMA N, SINGH T G, et al. COVID-19-associated acute respiratory distress syndrome (CARDS): mechanistic insights on therapeutic intervention and emerging trends[J]. Int Immunopharmacol, 2021, 101(Pt A): 108328.

[本文引用: 1]

SAKATANI H, KONO M, SHIGA T, et al. The roles of transient receptor potential vanilloid 1 and 4 in olfactory regeneration[J]. Lab Investig, 2023, 103(4): 100051.

[本文引用: 1]

JAFFAL S M, ABBAS M A. TRP channels in COVID-19 disease: potential targets for prevention and treatment[J]. Chem Biol Interact, 2021, 345: 109567.

[本文引用: 1]

HARFORD T J, GROVE L, REZAEE F, et al. RSV infection potentiates TRPV1-mediated calcium transport in bronchial epithelium of asthmatic children[J]. Am J Physiol Lung Cell Mol Physiol, 2021, 320(6): L1074-L1084.

[本文引用: 1]

STINSON R J, MORICE A H, SADOFSKY L R. Modulation of transient receptor potential (TRP) channels by plant derived substances used in over-the-counter cough and cold remedies[J]. Respir Res, 2023, 24(1): 45.

[本文引用: 1]

/