Status and advances in the mechanism research on dento-maxillofacial skeletal abnormalities
JIANG Lingyong,
Centre of Craniofacial Orthodontics, Department of Oral and Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, China
Dento-maxillofacial skeletal abnormalities exhibit high incidence rate, complex etiology, severe symptoms, difficult diagnosis and treatment, and lack of early intervention strategies, which is mainly due to insufficient exploration of mechanism research. These diseases are characterized by abnormal morphology, disordered mutual location and impaired function of bones and teeth, including skeletal abnormalities and malocclusion. Among them, maxillofacial bone and dento-periodontal complex are the two core structures, which respectively determine facial aesthetics and occlusal function. As for maxillofacial skeletal abnormalities, mechanism studies on skeletal development and pathogenesis are required for precise prevention and treatment. As for malocclusion, mechanism studies on homeostasis and stress remodeling are required from the perspective of orthodontics. Both mechanism studies can provide basic support for the diagnosis and treatment of dento-maxillofacial skeletal deformities. In this regard, previous studies usually focused on the expression maps of mutated genes and differential factors. In recent years, the development of conditional gene editing techniques, such as Cre-LoxP system, has enabled researchers to intuitively evaluate the function of key genes in a single cell lineage in vivo, helping to advance research on dento-maxillofacial skeletal abnormalities from phenotype level to molecular mechanism level. This review summarizes recent domestic and foreign researches on dento-maxillofacial skeletal abnormalities, as well as recent achievements of the author's team, and systematically proposes a research mode concluded as “One Centre, Two Motives”. The centre is dento-maxillofacial skeletal abnormalities. One motive is the development and pathogenic mechanisms of maxillofacial bone, and the other is the homeostasis and remodeling mechanisms of dento-periodontal complex. The research mode aims at systematical study of the pathogenesis and prognosis of diseases to explore potential therapies. Many advanced technologies have contributed to the exploration of “One Centre” through “Two Motives”: on the one hand, conditional gene editing models have provided a new strategy for studying the function of key factors in key cells in vivo; on the other hand, inducible conditional gene editing models have supported the precise control of the timeline for interventions after birth. Furthermore, with the help of single-cell sequencing and lineage tracing techniques, researchers have been focusing on tissue-specific stem cells, due to their in situ and characteristic functions. This situation is highly in line with the “One Centre, Two Motives” mode, and is benefit to shed a new insight on the theoretical researches and clinical applications of dento-maxillofacial skeletal abnormalities. The article reviews the “One Centre, Two Motives” mechanism research mode of dento-maxillofacial skeletal abnormalities.
Keywords:dento-maxillofacial skeletal abnormality
;
dental and maxillofacial skeletal development
;
bone homeostasis
;
gene editing
;
tissue-specific stem cell
JIANG Lingyong. Status and advances in the mechanism research on dento-maxillofacial skeletal abnormalities. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2024, 44(6): 663-675 doi:10.3969/j.issn.1674-8115.2024.06.001
Fig 2
Schematic diagram of the roles of WNT signaling, SHH signaling, RA signaling, BMP signaling, and Notch signaling during dento-maxillofacial development using LacZ tool mice
1.2.2 运用Cre-LoxP体系研究牙颌面关键细胞中关键因子的功能
随着精准医学的发展,针对关键细胞的靶向干预研究为疾病特征症状的治疗提供了新思路,研究者已着眼探究致病基因导致牙颌面畸形形成的关键细胞[27]。近年来,以Cre-LoxP系统为代表的条件性基因编辑模式动物技术的发展,为研究基因功能异常导致骨畸形发生的关键细胞谱系提供了新的途径。环化重组酶(cyclization recombinant enzyme,Cre)是一种位点特异性DNA重组酶,可以识别侧翼LoxP(locus of X-over P1)序列,导致2个LoxP位点之间序列发生重组,当2个LoxP位点同向分布于同一条DNA序列中时,2个LoxP位点之间的DNA片段将被切除。因此,通过在特征标记的细胞中表达Cre,即可在此特征细胞中进行条件性的基因编辑,实现研究关键细胞中关键因子功能的实验目的。目前,神经嵴细胞(neural crest cell,NCC)的Wnt1、性别决定区Y框蛋白9(sex determining region Y box protein,Sox9)[28],成骨细胞的配对相关同源框1(paired related homeobox 1,Prx1)、成骨相关转录因子(osterix,Osx)、骨钙蛋白(osteocalcin,Ocn)、Ⅰ型胶原蛋白A1(collagen type 1 A1,Col1a1)[3],骨细胞的牙本质基质蛋白(dentin matrix protein 1,Dmp1)[29],成软骨细胞的Ⅱ型胶原蛋白(collagen type 2,Col2)、真皮表达蛋白(dermis-expressed protein 1,Dermo1)[30],破骨细胞的溶菌酶C2蛋白(lysozyme C-2,Lysm)、组织蛋白酶K(cathepsin K,Ctsk)[31],上皮细胞的角蛋白14(cytokeratin 14,Krt14),第一鳃弓细胞的桩蛋白2(paired box protein 2,Pax2)、心脏神经嵴衍生物蛋白2(heart and neural crest derivative-expressed protein 2,Hand2)[32],腭间充质细胞的阴离子交换蛋白2(odd-skipped related 2,Osr2)[33]等细胞谱系的关键致病基因被敲除后均可呈现出不同程度的牙颌面畸形(表1)。值得注意的是,研究者发现,在特定细胞谱系中敲除关键基因可模拟牙颌面骨畸形综合征,如在成骨细胞而非破骨细胞中STAT3信号失活可导致常染色体显性高IgE综合征(autosomal dominant hyper IgE syndrome,AD-HIES)样颅颌面骨畸形[3],为早期靶向干预的发展提供了更为精准的修饰期望与目的细胞。但目前许多疾病模型仍停留在全基因敲除阶段,尽管通过部分体内或体外干预得到了一定的治疗效果,但对这种干预作用于何种细胞、恢复了该细胞何种功能尚无法解答。因此,在精准医学飞速发展的当下,运用条件性基因编辑动物研究疾病致病机制,是开发及优化疾病靶向干预策略的重要方向。
Tab 1
表1
表1条件性基因编辑小鼠鉴定得到的牙颌面关键细胞谱系及其相关畸形致病基因
Tab 1 Key cell lineages and related genes responsible for dento-maxillofacial abnormalities through conditional gene-edited mice
Death shortly after birth due to difficulties in feeding and breathing, severe craniofacial malformation, loss of craniofacial bones, frontonasal dysplasia, micrognathia, cleft palate
Note: ①—parietal/frontal bone abnormality; ②—dental abnormality; ③—jaw abnormality; ④—cleft palate. “‒” represents not ① or ② or ③ or ④. Prrx1—paired related homeobox 1; Foxg1—forkhead box protein G1; Med23—mediator complex subunit 23; Foxf2—forkhead box protein F2; Setdb1—SET domain, bifurcated 1; Ift20—intraflagellar transport protein 20; G9a—histone-lysine N-methyltransferase G9a; Tak1—transforming growth factor-beta-activated kinase 1; Tgfbr2—transforming growth factor, beta receptor Ⅱ; Nell1—NEL-like protein 1; Dlx3—distal-less homeobox 3; Yap/Taz—Yes-associated protein/tafazzin; Tfap2—transcription factor activating enhancer binding protein 2; Brca1/2—breast cancer susceptibility gene 1/2; Smo—smoothened, frizzled class receptor; Fgfr3—fibroblast growth factor receptor 3; Rar—retinoic acid receptor; Ror2—receptor tyrosine kinase like orphan receptor 2; Cbfb—core binding factor beta; Recql4—RecQ like helicase 4; Wls—wntless WNT ligand secretion mediator; Gα—G protein alpha; Efnb1—ephrin B1; Atg5—autophagy related protein 5; Fip200—focal adhesion kinase family interacting protein of 200 000; Tbx1—T-box protein 1; CATSHL syndrome—camptodactyly, tall stature, and hearing loss syndrome.
JIANG Lingyong conceived the idea, retrieved literature and drafted the manuscript. The author has read the last version of paper and consented for submission.
ZHOU S R, DAI Q G, HUANG X R, et al. STAT3 is critical for skeletal development and bone homeostasis by regulating osteogenesis[J]. Nat Commun, 2021, 12(1): 6891.
GONG X, SUN S, YANG Y, et al. Osteoblastic STAT3 is crucial for orthodontic force driving alveolar bone remodeling and tooth movement[J]. J Bone Miner Res, 2023, 38(1): 214-227.
CUGURRA A, MAMULADZE T, RUSTENHOVEN J, et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma[J]. Science, 2021, 373(6553): eabf7844.
YU M F, MA L, YUAN Y, et al. Cranial suture regeneration mitigates skull and neurocognitive defects in craniosynostosis[J]. Cell, 2021, 184(1): 243-256.e18.
PATEL N C, GALLAGHER J L, TORGERSON T R, et al. Successful haploidentical donor hematopoietic stem cell transplant and restoration of STAT3 function in an adolescent with autosomal dominant hyper-IgE syndrome[J]. J Clin Immunol, 2015, 35(5): 479-485.
LIU B, HUNTER D J, ROOKER S, et al. Wnt signaling promotes Müller cell proliferation and survival after injury[J]. Invest Ophthalmol Vis Sci, 2013, 54(1): 444-453.
LOHI M, TUCKER A S, SHARPE P T. Expression of Axin2 indicates a role for canonical Wnt signaling in development of the crown and root during pre- and postnatal tooth development[J]. Dev Dyn, 2010, 239(1): 160-167.
NAKASHIMA M, TANESE N, ITO M, et al. A novel gene, GliH1, with homology to the Gli zinc finger domain not required for mouse development[J]. Mech Dev, 2002, 119(1): 21-34.
GUSTAFSSON M K, PAN H, PINNEY D F, et al. Myf5 is a direct target of long-range Shh signaling and Gli regulation for muscle specification[J]. Genes Dev, 2002, 16(1): 114-126.
PATAPOUTIAN A, MINER J H, LYONS G E, et al. Isolated sequences from the linked Myf-5 and MRF4 genes drive distinct patterns of muscle-specific expression in transgenic mice[J]. Development, 1993, 118(1): 61-69.
LOHNES D, MARK M, MENDELSOHN C, et al. Function of the retinoic acid receptors (RARs) during development: (Ⅰ) Craniofacial and skeletal abnormalities in RAR double mutants[J]. Development, 1994, 120(10): 2723-2748.
YU X, KAWAKAMI H, TAHARA N, et al. Expression of Noggin and Gremlin1 and its implications in fine-tuning BMP activities in mouse cartilage tissues[J]. J Orthop Res, 2017, 35(8): 1671-1682.
BAEK W Y, KIM Y J, CROMBRUGGHE B D, et al. Osterix is required for cranial neural crest-derived craniofacial bone formation[J]. Biochem Biophys Res Commun, 2013, 432(1): 188-192.
XIAO M, ZHANG W J, LIU W, et al. Osteocytes regulate neutrophil development through IL-19: a potent cytokine for neutropenia treatment[J]. Blood, 2021, 137(25): 3533-3547.
YANG Y L, CHUNG M R, ZHOU S R, et al. STAT3 controls osteoclast differentiation and bone homeostasis by regulating NFATc1 transcription[J]. J Biol Chem, 2019, 294(42): 15395-15407.
XU J, CHEN M L, YAN Y N, et al. The effects of altered BMP4 signaling in first branchial-arch-derived murine embryonic orofacial tissues[J]. Int J Oral Sci, 2021, 13(1): 40.
CHEN Y X, WANG Z S, CHEN Y P, et al. Conditional deletion of Bmp2 in cranial neural crest cells recapitulates Pierre Robin sequence in mice[J]. Cell Tissue Res, 2019, 376(2): 199-210.
KANO S, HIGASHIHORI N, THIHA P, et al. The role of the histone methyltransferase SET domain bifurcated 1 during palatal development[J]. Biochem Biophys Res Commun, 2022, 598: 74-80.
NODA K, KITAMI M, KITAMI K, et al. Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development[J]. Proc Natl Acad Sci U S A, 2016, 113(19): E2589-E2597.
YAMAGUCHI H, TERAJIMA M, KITAMI M, et al. IFT20 is critical for collagen biosynthesis in craniofacial bone formation[J]. Biochem Biophys Res Commun, 2020, 533(4): 739-744.
IDENO H, NAKASHIMA K, KOMATSU K, et al. G9a is involved in the regulation of cranial bone formation through activation of Runx2 function during development[J]. Bone, 2020, 137: 115332.
KAMIUNTEN T, IDENO H, SHIMADA A, et al. Essential roles of G9a in cell proliferation and differentiation during tooth development[J]. Exp Cell Res, 2017, 357(2): 202-210.
SONG Z C, LIU C, IWATA J, et al. Mice with Tak1 deficiency in neural crest lineage exhibit cleft palate associated with abnormal tongue development[J]. J Biol Chem, 2013, 288(15): 10440-10450.
HOSOKAWA R, OKA K, YAMAZA T, et al. TGF-β mediated FGF10 signaling in cranial neural crest cells controls development of myogenic progenitor cells through tissue-tissue interactions during tongue morphogenesis[J]. Dev Biol, 2010, 341(1): 186-195.
CHEN X Y, WANG H M, YU M L, et al. Cumulative inactivation of Nell-1 in Wnt1 expressing cell lineages results in craniofacial skeletal hypoplasia and postnatal hydrocephalus[J]. Cell Death Differ, 2020, 27(4): 1415-1430.
DUVERGER O, OHARA T, BIBLE P W, et al. DLX3-dependent regulation of ion transporters and carbonic anhydrases is crucial for enamel mineralization[J]. J Bone Miner Res, 2017, 32(3): 641-653.
WANG J, XIAO Y, HSU C W, et al. Yap and Taz play a crucial role in neural crest-derived craniofacial development[J]. Development, 2016, 143(3): 504-515.
NGUYEN T T, MITCHELL J M, KIEL M D, et al. TFAP2 paralogs regulate midfacial development in part through a conserved ALX genetic pathway[J]. Development, 2024, 151(1): dev202095.
BILDSOE H, LOEBEL D A, JONES V J, et al. Requirement for Twist1 in frontonasal and skull vault development in the mouse embryo[J]. Dev Biol, 2009, 331(2): 176-188.
KITAMI K, KITAMI M, KAKU M, et al. BRCA1 and BRCA2 tumor suppressors in neural crest cells are essential for craniofacial bone development[J]. PLoS Genet, 2018, 14(5): e1007340.
JEONG J, MAO J H, TENZEN T, et al. Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia[J]. Genes Dev, 2004, 18(8): 937-951.
ALMAIDHAN A, CESARIO J, LANDIN MALT A, et al. Neural crest-specific deletion of Ldb1 leads to cleft secondary palate with impaired palatal shelf elevation[J]. BMC Dev Biol, 2014, 14: 3.
ZHANG Y P, BLACKWELL E L, MCKNIGHT M T, et al. Specific inactivation of Twist1 in the mandibular arch neural crest cells affects the development of the ramus and reveals interactions with Hand2[J]. Dev Dyn, 2012, 241(5): 924-940.
MENG T, HUANG Y Y, WANG S Z, et al. Twist1 is essential for tooth morphogenesis and odontoblast differentiation[J]. J Biol Chem, 2015, 290(49): 29593-29602.
YAMAGUCHI H, KITAMI M, UCHIMA KOECKLIN K H, et al. Temporospatial regulation of intraflagellar transport is required for the endochondral ossification in mice[J]. Dev Biol, 2022, 482: 91-100.
BIOSSE DUPLAN M, DAMBROISE E, ESTIBALS V, et al. An Fgfr3-activating mutation in immature murine osteoblasts affects the appendicular and craniofacial skeleton[J]. Dis Model Mech, 2021, 14(4): dmm048272.
SUN X D, ZHANG R B, CHEN H G, et al. Fgfr3 mutation disrupts chondrogenesis and bone ossification in zebrafish model mimicking CATSHL syndrome partially via enhanced Wnt/β-catenin signaling[J]. Theranostics, 2020, 10(16): 7111-7130.
LEI L Z, HUANG Z W, FENG J Y, et al. Loss of receptor tyrosine kinase-like orphan receptor 2 impairs the osteogenesis of mBMSCs by inhibiting signal transducer and activator of transcription 3[J]. Stem Cell Res Ther, 2020, 11(1): 137.
YADAV P S, FENG S H, CONG Q, et al. Stat3 loss in mesenchymal progenitors causes Job syndrome-like skeletal defects by reducing Wnt/β-catenin signaling[J]. Proc Natl Acad Sci U S A, 2021, 118(26): e2020100118.
CHEN W, MA J Q, ZHU G C, et al. Cbfβ deletion in mice recapitulates cleidocranial dysplasia and reveals multiple functions of Cbfβ required for skeletal development[J]. Proc Natl Acad Sci U S A, 2014, 111(23): 8482-8487.
TIAN F, WU M R, DENG L F, et al. Core binding factor beta (Cbfβ) controls the balance of chondrocyte proliferation and differentiation by upregulating Indian hedgehog (Ihh) expression and inhibiting parathyroid hormone-related protein receptor (PPR) expression in postnatal cartilage and bone formation[J]. J Bone Miner Res, 2014, 29(7): 1564-1574.
GOODWIN A F, CHEN C P, VO N T, et al. YAP/TAZ regulate elevation and bone formation of the mouse secondary palate[J]. J Dent Res, 2020, 99(12): 1387-1396.
CANALIS E, GROSSMAN T R, CARRER M, et al. Antisense oligonucleotides targeting Notch2 ameliorate the osteopenic phenotype in a mouse model of Hajdu-Cheney syndrome[J]. J Biol Chem, 2020, 295(12): 3952-3964.
ZANOTTI S, YU J, SANJAY A, et al. Sustained Notch2 signaling in osteoblasts, but not in osteoclasts, is linked to osteopenia in a mouse model of Hajdu-Cheney syndrome[J]. J Biol Chem, 2017, 292(29): 12232-12244.
LEE K K L, PESKETT E, QUINN C M, et al. Overexpression of Fgfr2c causes craniofacial bone hypoplasia and ameliorates craniosynostosis in the Crouzon mouse[J]. Dis Model Mech, 2018, 11(11): dmm035311.
ZHAO X F, DENG P, IGLESIAS-BARTOLOME R, et al. Expression of an active Gαs mutant in skeletal stem cells is sufficient and necessary for fibrous dysplasia initiation and maintenance[J]. Proc Natl Acad Sci U S A, 2018, 115(3): E428-E437.
BEREZA S, YONG R, GRONTHOS S, et al. Craniomaxillofacial morphology in a murine model of ephrinB1 conditional deletion in osteoprogenitor cells[J]. Arch Oral Biol, 2022, 137: 105389.
IWATA J I, SUZUKI A, YOKOTA T, et al. TGFβ regulates epithelial-mesenchymal interactions through WNT signaling activity to control muscle development in the soft palate[J]. Development, 2014, 141(4): 909-917.
DUVERGER O, ISAAC J, ZAH A, et al. In vivo impact of Dlx3 conditional inactivation in neural crest-derived craniofacial bones[J]. J Cell Physiol, 2013, 228(3): 654-664.
HOSOKAWA R, DENG X M, TAKAMORI K, et al. Epithelial-specific requirement of FGFR2 signaling during tooth and palate development[J]. J Exp Zool B Mol Dev Evol, 2009, 312B(4): 343-350.
JANEČKOVÁ E, FENG J F, GUO T W, et al. Canonical Wnt signaling regulates soft palate development by mediating ciliary homeostasis[J]. Development, 2023, 150(5): dev201189.
ARNOLD J S, WERLING U, BRAUNSTEIN E M, et al. Inactivation of Tbx1 in the pharyngeal endoderm results in 22q11DS malformations[J]. Development, 2006, 133(5): 977-987.
RANSOM R C, CARTER A C, SALHOTRA A, et al. Mechanoresponsive stem cells acquire neural crest fate in jaw regeneration[J]. Nature, 2018, 563(7732): 514-521.
XU X, LIU S Y, LIU H, et al. Piezo channels: awesome mechanosensitive structures in cellular mechanotransduction and their role in bone[J]. Int J Mol Sci, 2021, 22(12): 6429.
WANG X Y, HUANG X R, GAO X, et al. Differentiation potential of periodontal Col1+ cells under orthodontic force[J]. Mechanobiol Med, 2024, 2(1): 100026.
WANG Y J, LI J, ZHOU J P, et al. Low-intensity pulsed ultrasound enhances bone marrow-derived stem cells-based periodontal regenerative therapies[J]. Ultrasonics, 2022, 121: 106678.
ZHOU J, ZHU Y L, AI D Q, et al. Low-intensity pulsed ultrasound regulates osteoblast-osteoclast crosstalk via EphrinB2/EphB4 signaling for orthodontic alveolar bone remodeling[J]. Front Bioeng Biotechnol, 2023, 11: 1192720.
YANG C Y, JEON H H, ALSHABAB A, et al. RANKL deletion in periodontal ligament and bone lining cells blocks orthodontic tooth movement[J]. Int J Oral Sci, 2018, 10(1): 3.
GRONTHOS S, MANKANI M, BRAHIM J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo[J]. Proc Natl Acad Sci U S A, 2000, 97(25): 13625-13630.
WEI F L, SONG T L, DING G, et al. Functional tooth restoration by allogeneic mesenchymal stem cell-based bio-root regeneration in swine[J]. Stem Cells Dev, 2013, 22(12): 1752-1762.
LIU Y, YANG R L, LIU X B, et al. Hydrogen sulfide maintains mesenchymal stem cell function and bone homeostasis via regulation of Ca2+ channel sulfhydration[J]. Cell Stem Cell, 2014, 15(1): 66-78.
MARUYAMA T, JEONG J, SHEU T J, et al. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration[J]. Nat Commun, 2016, 7: 10526.
WILK K, YEH S C A, MORTENSEN L J, et al. Postnatal calvarial skeletal stem cells expressing PRX1 reside exclusively in the calvarial sutures and are required for bone regeneration[J]. Stem Cell Reports, 2017, 8(4): 933-946.
ZHAO H, FENG J F, HO T V, et al. The suture provides a niche for mesenchymal stem cells of craniofacial bones[J]. Nat Cell Biol, 2015, 17(4): 386-396.
ORTINAU L C, WANG H, LEI K, et al. Identification of functionally distinct Mx1+αSMA+ periosteal skeletal stem cells[J]. Cell Stem Cell, 2019, 25(6): 784-796.e5.
WENG Y T, WANG H C, WU D, et al. A novel lineage of osteoprogenitor cells with dual epithelial and mesenchymal properties govern maxillofacial bone homeostasis and regeneration after MSFL[J]. Cell Res, 2022, 32(9): 814-830.
ZHANG N, BARRELL W B, LIU K J. Identification of distinct subpopulations of Gli1-lineage cells in the mouse mandible[J]. J Anat, 2023, 243(1): 90-99.
DING Y, MO C, GENG J, et al. Identification of periosteal osteogenic progenitors in jawbone[J]. J Dent Res, 2022, 101(9): 1101-1109.
ROGULJIC H, MATTHEWS B G, YANG W, et al. In vivo identification of periodontal progenitor cells[J]. J Dent Res, 2013, 92(8): 709-715.
YUAN X, PEI X, ZHAO Y, et al. A Wnt-responsive PDL population effectuates extraction socket healing[J]. J Dent Res, 2018, 97(7): 803-809.
BASSIR S H, GARAKANI S, WILK K, et al. Prx1 expressing cells are required for periodontal regeneration of the mouse incisor[J]. Front Physiol, 2019, 10: 591.
ZHAO H, FENG J F, SEIDEL K, et al. Secretion of Shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor[J]. Cell Stem Cell, 2014, 14(2): 160-173.
TAKAHASHI A, NAGATA M, GUPTA A, et al. Autocrine regulation of mesenchymal progenitor cell fates orchestrates tooth eruption[J]. Proc Natl Acad Sci U S A, 2019, 116(2): 575-580.
CHEN H, FU H C, WU X, et al. Regeneration of pulpo-dentinal-like complex by a group of unique multipotent CD24a+ stem cells[J]. Sci Adv, 2020, 6(15): eaay1514.
ZHANG D, ZHANG S, WANG J, et al. LepR-expressing stem cells are essential for alveolar bone regeneration[J]. J Dent Res, 2020, 99(11): 1279-1286.
SHALEHIN N, SEKI Y, TAKEBE H, et al. Gli1+-PDL cells contribute to alveolar bone homeostasis and regeneration[J]. J Dent Res, 2022, 101(12): 1537-1543.
WU L D, LIU Z X, XIAO L, et al. The role of Gli1+ mesenchymal stem cells in osteogenesis of craniofacial bone[J]. Biomolecules, 2023, 13(9): 1351.
LI W D, CAVELTI-WEDER C, ZHANG Y Y, et al. Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells[J]. Nat Biotechnol, 2014, 32(12): 1223-1230.
TANG J, WANG H X, HUANG X Z, et al. Arterial Sca1+ vascular stem cells generate de novo smooth muscle for artery repair and regeneration[J]. Cell Stem Cell, 2020, 26(1): 81-96.e4.
... 随着精准医学的发展,针对关键细胞的靶向干预研究为疾病特征症状的治疗提供了新思路,研究者已着眼探究致病基因导致牙颌面畸形形成的关键细胞[27].近年来,以Cre-LoxP系统为代表的条件性基因编辑模式动物技术的发展,为研究基因功能异常导致骨畸形发生的关键细胞谱系提供了新的途径.环化重组酶(cyclization recombinant enzyme,Cre)是一种位点特异性DNA重组酶,可以识别侧翼LoxP(locus of X-over P1)序列,导致2个LoxP位点之间序列发生重组,当2个LoxP位点同向分布于同一条DNA序列中时,2个LoxP位点之间的DNA片段将被切除.因此,通过在特征标记的细胞中表达Cre,即可在此特征细胞中进行条件性的基因编辑,实现研究关键细胞中关键因子功能的实验目的.目前,神经嵴细胞(neural crest cell,NCC)的Wnt1、性别决定区Y框蛋白9(sex determining region Y box protein,Sox9)[28],成骨细胞的配对相关同源框1(paired related homeobox 1,Prx1)、成骨相关转录因子(osterix,Osx)、骨钙蛋白(osteocalcin,Ocn)、Ⅰ型胶原蛋白A1(collagen type 1 A1,Col1a1)[3],骨细胞的牙本质基质蛋白(dentin matrix protein 1,Dmp1)[29],成软骨细胞的Ⅱ型胶原蛋白(collagen type 2,Col2)、真皮表达蛋白(dermis-expressed protein 1,Dermo1)[30],破骨细胞的溶菌酶C2蛋白(lysozyme C-2,Lysm)、组织蛋白酶K(cathepsin K,Ctsk)[31],上皮细胞的角蛋白14(cytokeratin 14,Krt14),第一鳃弓细胞的桩蛋白2(paired box protein 2,Pax2)、心脏神经嵴衍生物蛋白2(heart and neural crest derivative-expressed protein 2,Hand2)[32],腭间充质细胞的阴离子交换蛋白2(odd-skipped related 2,Osr2)[33]等细胞谱系的关键致病基因被敲除后均可呈现出不同程度的牙颌面畸形(表1).值得注意的是,研究者发现,在特定细胞谱系中敲除关键基因可模拟牙颌面骨畸形综合征,如在成骨细胞而非破骨细胞中STAT3信号失活可导致常染色体显性高IgE综合征(autosomal dominant hyper IgE syndrome,AD-HIES)样颅颌面骨畸形[3],为早期靶向干预的发展提供了更为精准的修饰期望与目的细胞.但目前许多疾病模型仍停留在全基因敲除阶段,尽管通过部分体内或体外干预得到了一定的治疗效果,但对这种干预作用于何种细胞、恢复了该细胞何种功能尚无法解答.因此,在精准医学飞速发展的当下,运用条件性基因编辑动物研究疾病致病机制,是开发及优化疾病靶向干预策略的重要方向. ...
... 随着精准医学的发展,针对关键细胞的靶向干预研究为疾病特征症状的治疗提供了新思路,研究者已着眼探究致病基因导致牙颌面畸形形成的关键细胞[27].近年来,以Cre-LoxP系统为代表的条件性基因编辑模式动物技术的发展,为研究基因功能异常导致骨畸形发生的关键细胞谱系提供了新的途径.环化重组酶(cyclization recombinant enzyme,Cre)是一种位点特异性DNA重组酶,可以识别侧翼LoxP(locus of X-over P1)序列,导致2个LoxP位点之间序列发生重组,当2个LoxP位点同向分布于同一条DNA序列中时,2个LoxP位点之间的DNA片段将被切除.因此,通过在特征标记的细胞中表达Cre,即可在此特征细胞中进行条件性的基因编辑,实现研究关键细胞中关键因子功能的实验目的.目前,神经嵴细胞(neural crest cell,NCC)的Wnt1、性别决定区Y框蛋白9(sex determining region Y box protein,Sox9)[28],成骨细胞的配对相关同源框1(paired related homeobox 1,Prx1)、成骨相关转录因子(osterix,Osx)、骨钙蛋白(osteocalcin,Ocn)、Ⅰ型胶原蛋白A1(collagen type 1 A1,Col1a1)[3],骨细胞的牙本质基质蛋白(dentin matrix protein 1,Dmp1)[29],成软骨细胞的Ⅱ型胶原蛋白(collagen type 2,Col2)、真皮表达蛋白(dermis-expressed protein 1,Dermo1)[30],破骨细胞的溶菌酶C2蛋白(lysozyme C-2,Lysm)、组织蛋白酶K(cathepsin K,Ctsk)[31],上皮细胞的角蛋白14(cytokeratin 14,Krt14),第一鳃弓细胞的桩蛋白2(paired box protein 2,Pax2)、心脏神经嵴衍生物蛋白2(heart and neural crest derivative-expressed protein 2,Hand2)[32],腭间充质细胞的阴离子交换蛋白2(odd-skipped related 2,Osr2)[33]等细胞谱系的关键致病基因被敲除后均可呈现出不同程度的牙颌面畸形(表1).值得注意的是,研究者发现,在特定细胞谱系中敲除关键基因可模拟牙颌面骨畸形综合征,如在成骨细胞而非破骨细胞中STAT3信号失活可导致常染色体显性高IgE综合征(autosomal dominant hyper IgE syndrome,AD-HIES)样颅颌面骨畸形[3],为早期靶向干预的发展提供了更为精准的修饰期望与目的细胞.但目前许多疾病模型仍停留在全基因敲除阶段,尽管通过部分体内或体外干预得到了一定的治疗效果,但对这种干预作用于何种细胞、恢复了该细胞何种功能尚无法解答.因此,在精准医学飞速发展的当下,运用条件性基因编辑动物研究疾病致病机制,是开发及优化疾病靶向干预策略的重要方向. ...
... 随着单细胞测序与谱系示踪技术的发展,研究者通过构建荧光示踪模式动物,发现了一系列牙颌面干细胞标志物:如颅骨骨缝间充质干细胞的Axin2+[99]、Prrx1+[100]、Gli1+[101],颅骨骨膜干细胞的Mx1+ (黏病毒耐药蛋白1,myxovirus resistance 1)α-SMA+ (α-平滑肌肌动蛋白,α-smooth muscle actin)[102],上颌窦黏膜干细胞的Krt14+Ctsk+[103],下颌骨骨膜干细胞的Gli1+[104]、Ctsk+Ly6a+ (淋巴细胞抗原6复合物基因座A,lymphocyte antigen 6 complex locus A)[105],PDLSC的α-SMA+[106]、Axin2+[107]、Prrx1+[108]、Gli1+[109]、Lepr+ (瘦素受体蛋白,leptin receptor)[27]、Ctsk+[27]、Pthrp+ (甲状旁腺激素相关蛋白,parathyroid hormone-related protein)[110],DPSC的Sox10(性别决定区Y框蛋白10,sex determining region Y box protein 10)/Plp1+ (鞘磷脂脂质蛋白1,proteolipid protein 1)[111]、Cd24a+[112],牙槽骨干细胞亚群的Fat4+ (原钙黏蛋白4,protocadherin 4)[5]、Lepr+[113]、Gli1+[114]等(图4).上述成果通过模式动物实验进一步明确了牙颌面干细胞的特性及功能,大大推动了对牙颌面干细胞的认识. ...
2
... 随着精准医学的发展,针对关键细胞的靶向干预研究为疾病特征症状的治疗提供了新思路,研究者已着眼探究致病基因导致牙颌面畸形形成的关键细胞[27].近年来,以Cre-LoxP系统为代表的条件性基因编辑模式动物技术的发展,为研究基因功能异常导致骨畸形发生的关键细胞谱系提供了新的途径.环化重组酶(cyclization recombinant enzyme,Cre)是一种位点特异性DNA重组酶,可以识别侧翼LoxP(locus of X-over P1)序列,导致2个LoxP位点之间序列发生重组,当2个LoxP位点同向分布于同一条DNA序列中时,2个LoxP位点之间的DNA片段将被切除.因此,通过在特征标记的细胞中表达Cre,即可在此特征细胞中进行条件性的基因编辑,实现研究关键细胞中关键因子功能的实验目的.目前,神经嵴细胞(neural crest cell,NCC)的Wnt1、性别决定区Y框蛋白9(sex determining region Y box protein,Sox9)[28],成骨细胞的配对相关同源框1(paired related homeobox 1,Prx1)、成骨相关转录因子(osterix,Osx)、骨钙蛋白(osteocalcin,Ocn)、Ⅰ型胶原蛋白A1(collagen type 1 A1,Col1a1)[3],骨细胞的牙本质基质蛋白(dentin matrix protein 1,Dmp1)[29],成软骨细胞的Ⅱ型胶原蛋白(collagen type 2,Col2)、真皮表达蛋白(dermis-expressed protein 1,Dermo1)[30],破骨细胞的溶菌酶C2蛋白(lysozyme C-2,Lysm)、组织蛋白酶K(cathepsin K,Ctsk)[31],上皮细胞的角蛋白14(cytokeratin 14,Krt14),第一鳃弓细胞的桩蛋白2(paired box protein 2,Pax2)、心脏神经嵴衍生物蛋白2(heart and neural crest derivative-expressed protein 2,Hand2)[32],腭间充质细胞的阴离子交换蛋白2(odd-skipped related 2,Osr2)[33]等细胞谱系的关键致病基因被敲除后均可呈现出不同程度的牙颌面畸形(表1).值得注意的是,研究者发现,在特定细胞谱系中敲除关键基因可模拟牙颌面骨畸形综合征,如在成骨细胞而非破骨细胞中STAT3信号失活可导致常染色体显性高IgE综合征(autosomal dominant hyper IgE syndrome,AD-HIES)样颅颌面骨畸形[3],为早期靶向干预的发展提供了更为精准的修饰期望与目的细胞.但目前许多疾病模型仍停留在全基因敲除阶段,尽管通过部分体内或体外干预得到了一定的治疗效果,但对这种干预作用于何种细胞、恢复了该细胞何种功能尚无法解答.因此,在精准医学飞速发展的当下,运用条件性基因编辑动物研究疾病致病机制,是开发及优化疾病靶向干预策略的重要方向. ...
... RA signaling
①③④
Branchio-oto-renal syndrome, midface cleft, defected craniofacial bone
[51]
NCC (Wnt1-Cre)
Twist1
FGF signaling
①
Defected craniofacial bone
[52]
NCC (Wnt1-Cre)
Brca1/2
P53 signaling
①④
Craniostenosis, cleft palate, defected craniofacial bone
[53]
NCC (Wnt1-Cre)
Smo
SHH signaling
①
Defected craniofacial bone
[54]
NCC (Wnt1-Cre)
Ldb1
WNT signaling
④
Cleft palate
[55]
NCC (Wnt1-Cre)
Osx
FGF signaling
①③
Micrognathia, defected craniofacial bone
[28]
First branchial arch mesenchymal cell (Pax2-Cre)
Bmp4
BMP signaling
‒
Bilateral hyperplastic tissues
[32]
First branchial arch mesenchymal cell (Hand2-Cre)
Twist1
FGF signaling
③④
Micrognathia, cleft palate
[56]
Mesenchymal cell (Twist2-Cre)
Fgf18
WNT signaling
①③
Micrognathia, defected craniofacial bone
[36]
Mesenchymal cell (Twist1-Cre)
Twist1
FGF signaling
②
Defected dentin and enamel, tooth abnormalities
[57]
Osteoblast (Prx1-Cre)
Ift20
WNT signaling
①
Craniostenosis
[58]
Osteoblast (Osx-Cre, Col1-Cre)
Fgfr3
WNT signaling
①
Osx: CATSHL syndrome, frontonasal dysplasia ...
1
... 随着精准医学的发展,针对关键细胞的靶向干预研究为疾病特征症状的治疗提供了新思路,研究者已着眼探究致病基因导致牙颌面畸形形成的关键细胞[27].近年来,以Cre-LoxP系统为代表的条件性基因编辑模式动物技术的发展,为研究基因功能异常导致骨畸形发生的关键细胞谱系提供了新的途径.环化重组酶(cyclization recombinant enzyme,Cre)是一种位点特异性DNA重组酶,可以识别侧翼LoxP(locus of X-over P1)序列,导致2个LoxP位点之间序列发生重组,当2个LoxP位点同向分布于同一条DNA序列中时,2个LoxP位点之间的DNA片段将被切除.因此,通过在特征标记的细胞中表达Cre,即可在此特征细胞中进行条件性的基因编辑,实现研究关键细胞中关键因子功能的实验目的.目前,神经嵴细胞(neural crest cell,NCC)的Wnt1、性别决定区Y框蛋白9(sex determining region Y box protein,Sox9)[28],成骨细胞的配对相关同源框1(paired related homeobox 1,Prx1)、成骨相关转录因子(osterix,Osx)、骨钙蛋白(osteocalcin,Ocn)、Ⅰ型胶原蛋白A1(collagen type 1 A1,Col1a1)[3],骨细胞的牙本质基质蛋白(dentin matrix protein 1,Dmp1)[29],成软骨细胞的Ⅱ型胶原蛋白(collagen type 2,Col2)、真皮表达蛋白(dermis-expressed protein 1,Dermo1)[30],破骨细胞的溶菌酶C2蛋白(lysozyme C-2,Lysm)、组织蛋白酶K(cathepsin K,Ctsk)[31],上皮细胞的角蛋白14(cytokeratin 14,Krt14),第一鳃弓细胞的桩蛋白2(paired box protein 2,Pax2)、心脏神经嵴衍生物蛋白2(heart and neural crest derivative-expressed protein 2,Hand2)[32],腭间充质细胞的阴离子交换蛋白2(odd-skipped related 2,Osr2)[33]等细胞谱系的关键致病基因被敲除后均可呈现出不同程度的牙颌面畸形(表1).值得注意的是,研究者发现,在特定细胞谱系中敲除关键基因可模拟牙颌面骨畸形综合征,如在成骨细胞而非破骨细胞中STAT3信号失活可导致常染色体显性高IgE综合征(autosomal dominant hyper IgE syndrome,AD-HIES)样颅颌面骨畸形[3],为早期靶向干预的发展提供了更为精准的修饰期望与目的细胞.但目前许多疾病模型仍停留在全基因敲除阶段,尽管通过部分体内或体外干预得到了一定的治疗效果,但对这种干预作用于何种细胞、恢复了该细胞何种功能尚无法解答.因此,在精准医学飞速发展的当下,运用条件性基因编辑动物研究疾病致病机制,是开发及优化疾病靶向干预策略的重要方向. ...
2
... 随着精准医学的发展,针对关键细胞的靶向干预研究为疾病特征症状的治疗提供了新思路,研究者已着眼探究致病基因导致牙颌面畸形形成的关键细胞[27].近年来,以Cre-LoxP系统为代表的条件性基因编辑模式动物技术的发展,为研究基因功能异常导致骨畸形发生的关键细胞谱系提供了新的途径.环化重组酶(cyclization recombinant enzyme,Cre)是一种位点特异性DNA重组酶,可以识别侧翼LoxP(locus of X-over P1)序列,导致2个LoxP位点之间序列发生重组,当2个LoxP位点同向分布于同一条DNA序列中时,2个LoxP位点之间的DNA片段将被切除.因此,通过在特征标记的细胞中表达Cre,即可在此特征细胞中进行条件性的基因编辑,实现研究关键细胞中关键因子功能的实验目的.目前,神经嵴细胞(neural crest cell,NCC)的Wnt1、性别决定区Y框蛋白9(sex determining region Y box protein,Sox9)[28],成骨细胞的配对相关同源框1(paired related homeobox 1,Prx1)、成骨相关转录因子(osterix,Osx)、骨钙蛋白(osteocalcin,Ocn)、Ⅰ型胶原蛋白A1(collagen type 1 A1,Col1a1)[3],骨细胞的牙本质基质蛋白(dentin matrix protein 1,Dmp1)[29],成软骨细胞的Ⅱ型胶原蛋白(collagen type 2,Col2)、真皮表达蛋白(dermis-expressed protein 1,Dermo1)[30],破骨细胞的溶菌酶C2蛋白(lysozyme C-2,Lysm)、组织蛋白酶K(cathepsin K,Ctsk)[31],上皮细胞的角蛋白14(cytokeratin 14,Krt14),第一鳃弓细胞的桩蛋白2(paired box protein 2,Pax2)、心脏神经嵴衍生物蛋白2(heart and neural crest derivative-expressed protein 2,Hand2)[32],腭间充质细胞的阴离子交换蛋白2(odd-skipped related 2,Osr2)[33]等细胞谱系的关键致病基因被敲除后均可呈现出不同程度的牙颌面畸形(表1).值得注意的是,研究者发现,在特定细胞谱系中敲除关键基因可模拟牙颌面骨畸形综合征,如在成骨细胞而非破骨细胞中STAT3信号失活可导致常染色体显性高IgE综合征(autosomal dominant hyper IgE syndrome,AD-HIES)样颅颌面骨畸形[3],为早期靶向干预的发展提供了更为精准的修饰期望与目的细胞.但目前许多疾病模型仍停留在全基因敲除阶段,尽管通过部分体内或体外干预得到了一定的治疗效果,但对这种干预作用于何种细胞、恢复了该细胞何种功能尚无法解答.因此,在精准医学飞速发展的当下,运用条件性基因编辑动物研究疾病致病机制,是开发及优化疾病靶向干预策略的重要方向. ...
Defective ameloblast and odontoblast differentiation
[76]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
β-catenin
WNT signaling
④
Cleft palate
[80]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
Runx2
RA signaling
④
Cleft palate
[33]
Pharyngeal endoderm cell (Foxg1-Cre)
Tbx1
Unclear
①③
Velo-cardio-facial syndrome
[81]
Note: ①—parietal/frontal bone abnormality; ②—dental abnormality; ③—jaw abnormality; ④—cleft palate. “‒” represents not ① or ② or ③ or ④. Prrx1—paired related homeobox 1; Foxg1—forkhead box protein G1; Med23—mediator complex subunit 23; Foxf2—forkhead box protein F2; Setdb1—SET domain, bifurcated 1; Ift20—intraflagellar transport protein 20; G9a—histone-lysine N-methyltransferase G9a; Tak1—transforming growth factor-beta-activated kinase 1; Tgfbr2—transforming growth factor, beta receptor Ⅱ; Nell1—NEL-like protein 1; Dlx3—distal-less homeobox 3; Yap/Taz—Yes-associated protein/tafazzin; Tfap2—transcription factor activating enhancer binding protein 2; Brca1/2—breast cancer susceptibility gene 1/2; Smo—smoothened, frizzled class receptor; Fgfr3—fibroblast growth factor receptor 3; Rar—retinoic acid receptor; Ror2—receptor tyrosine kinase like orphan receptor 2; Cbfb—core binding factor beta; Recql4—RecQ like helicase 4; Wls—wntless WNT ligand secretion mediator; Gα—G protein alpha; Efnb1—ephrin B1; Atg5—autophagy related protein 5; Fip200—focal adhesion kinase family interacting protein of 200 000; Tbx1—T-box protein 1; CATSHL syndrome—camptodactyly, tall stature, and hearing loss syndrome. ...
1
... 随着精准医学的发展,针对关键细胞的靶向干预研究为疾病特征症状的治疗提供了新思路,研究者已着眼探究致病基因导致牙颌面畸形形成的关键细胞[27].近年来,以Cre-LoxP系统为代表的条件性基因编辑模式动物技术的发展,为研究基因功能异常导致骨畸形发生的关键细胞谱系提供了新的途径.环化重组酶(cyclization recombinant enzyme,Cre)是一种位点特异性DNA重组酶,可以识别侧翼LoxP(locus of X-over P1)序列,导致2个LoxP位点之间序列发生重组,当2个LoxP位点同向分布于同一条DNA序列中时,2个LoxP位点之间的DNA片段将被切除.因此,通过在特征标记的细胞中表达Cre,即可在此特征细胞中进行条件性的基因编辑,实现研究关键细胞中关键因子功能的实验目的.目前,神经嵴细胞(neural crest cell,NCC)的Wnt1、性别决定区Y框蛋白9(sex determining region Y box protein,Sox9)[28],成骨细胞的配对相关同源框1(paired related homeobox 1,Prx1)、成骨相关转录因子(osterix,Osx)、骨钙蛋白(osteocalcin,Ocn)、Ⅰ型胶原蛋白A1(collagen type 1 A1,Col1a1)[3],骨细胞的牙本质基质蛋白(dentin matrix protein 1,Dmp1)[29],成软骨细胞的Ⅱ型胶原蛋白(collagen type 2,Col2)、真皮表达蛋白(dermis-expressed protein 1,Dermo1)[30],破骨细胞的溶菌酶C2蛋白(lysozyme C-2,Lysm)、组织蛋白酶K(cathepsin K,Ctsk)[31],上皮细胞的角蛋白14(cytokeratin 14,Krt14),第一鳃弓细胞的桩蛋白2(paired box protein 2,Pax2)、心脏神经嵴衍生物蛋白2(heart and neural crest derivative-expressed protein 2,Hand2)[32],腭间充质细胞的阴离子交换蛋白2(odd-skipped related 2,Osr2)[33]等细胞谱系的关键致病基因被敲除后均可呈现出不同程度的牙颌面畸形(表1).值得注意的是,研究者发现,在特定细胞谱系中敲除关键基因可模拟牙颌面骨畸形综合征,如在成骨细胞而非破骨细胞中STAT3信号失活可导致常染色体显性高IgE综合征(autosomal dominant hyper IgE syndrome,AD-HIES)样颅颌面骨畸形[3],为早期靶向干预的发展提供了更为精准的修饰期望与目的细胞.但目前许多疾病模型仍停留在全基因敲除阶段,尽管通过部分体内或体外干预得到了一定的治疗效果,但对这种干预作用于何种细胞、恢复了该细胞何种功能尚无法解答.因此,在精准医学飞速发展的当下,运用条件性基因编辑动物研究疾病致病机制,是开发及优化疾病靶向干预策略的重要方向. ...
3
... 随着精准医学的发展,针对关键细胞的靶向干预研究为疾病特征症状的治疗提供了新思路,研究者已着眼探究致病基因导致牙颌面畸形形成的关键细胞[27].近年来,以Cre-LoxP系统为代表的条件性基因编辑模式动物技术的发展,为研究基因功能异常导致骨畸形发生的关键细胞谱系提供了新的途径.环化重组酶(cyclization recombinant enzyme,Cre)是一种位点特异性DNA重组酶,可以识别侧翼LoxP(locus of X-over P1)序列,导致2个LoxP位点之间序列发生重组,当2个LoxP位点同向分布于同一条DNA序列中时,2个LoxP位点之间的DNA片段将被切除.因此,通过在特征标记的细胞中表达Cre,即可在此特征细胞中进行条件性的基因编辑,实现研究关键细胞中关键因子功能的实验目的.目前,神经嵴细胞(neural crest cell,NCC)的Wnt1、性别决定区Y框蛋白9(sex determining region Y box protein,Sox9)[28],成骨细胞的配对相关同源框1(paired related homeobox 1,Prx1)、成骨相关转录因子(osterix,Osx)、骨钙蛋白(osteocalcin,Ocn)、Ⅰ型胶原蛋白A1(collagen type 1 A1,Col1a1)[3],骨细胞的牙本质基质蛋白(dentin matrix protein 1,Dmp1)[29],成软骨细胞的Ⅱ型胶原蛋白(collagen type 2,Col2)、真皮表达蛋白(dermis-expressed protein 1,Dermo1)[30],破骨细胞的溶菌酶C2蛋白(lysozyme C-2,Lysm)、组织蛋白酶K(cathepsin K,Ctsk)[31],上皮细胞的角蛋白14(cytokeratin 14,Krt14),第一鳃弓细胞的桩蛋白2(paired box protein 2,Pax2)、心脏神经嵴衍生物蛋白2(heart and neural crest derivative-expressed protein 2,Hand2)[32],腭间充质细胞的阴离子交换蛋白2(odd-skipped related 2,Osr2)[33]等细胞谱系的关键致病基因被敲除后均可呈现出不同程度的牙颌面畸形(表1).值得注意的是,研究者发现,在特定细胞谱系中敲除关键基因可模拟牙颌面骨畸形综合征,如在成骨细胞而非破骨细胞中STAT3信号失活可导致常染色体显性高IgE综合征(autosomal dominant hyper IgE syndrome,AD-HIES)样颅颌面骨畸形[3],为早期靶向干预的发展提供了更为精准的修饰期望与目的细胞.但目前许多疾病模型仍停留在全基因敲除阶段,尽管通过部分体内或体外干预得到了一定的治疗效果,但对这种干预作用于何种细胞、恢复了该细胞何种功能尚无法解答.因此,在精准医学飞速发展的当下,运用条件性基因编辑动物研究疾病致病机制,是开发及优化疾病靶向干预策略的重要方向. ...
... Key cell lineages and related genes responsible for dento-maxillofacial abnormalities through conditional gene-edited miceTab 1
Branchio-oto-renal syndrome, micrognathia, cleft palate with ankyloglossia
[37]
NCC (Wnt1-Cre)
Bmp2
BMP signaling
③④
Pierre Robin syndrome
[38]
NCC (Wnt1-Cre)
Bmp4
BMP signaling
②③④
Severe deformation of molar buds, palate, and maxilla-mandibular bony structures; defected Meckel's cartilage
[32]
NCC (Wnt1-Cre)
Foxf2
SHH signaling
④
Cleft palate
[39]
NCC (Wnt1-Cre)
Setdb1
BMP signaling, WNT signaling
④
Cleft palate
[40]
NCC (Wnt1-Cre)
Ift20
WNT signaling
①③④
Death shortly after birth due to difficulties in feeding and breathing, severe craniofacial malformation, loss of craniofacial bones, frontonasal dysplasia, micrognathia, cleft palate
[41-42]
NCC (Wnt1-Cre, Sox9-Cre)
G9a
SHH signaling
Wnt1: ①③; Sox9: ①②
Wnt1: death shortly after birth, shortened maxilla, restricted airway, frontonasal dysplasia ...
... RA signaling
①③④
Branchio-oto-renal syndrome, midface cleft, defected craniofacial bone
[51]
NCC (Wnt1-Cre)
Twist1
FGF signaling
①
Defected craniofacial bone
[52]
NCC (Wnt1-Cre)
Brca1/2
P53 signaling
①④
Craniostenosis, cleft palate, defected craniofacial bone
[53]
NCC (Wnt1-Cre)
Smo
SHH signaling
①
Defected craniofacial bone
[54]
NCC (Wnt1-Cre)
Ldb1
WNT signaling
④
Cleft palate
[55]
NCC (Wnt1-Cre)
Osx
FGF signaling
①③
Micrognathia, defected craniofacial bone
[28]
First branchial arch mesenchymal cell (Pax2-Cre)
Bmp4
BMP signaling
‒
Bilateral hyperplastic tissues
[32]
First branchial arch mesenchymal cell (Hand2-Cre)
Twist1
FGF signaling
③④
Micrognathia, cleft palate
[56]
Mesenchymal cell (Twist2-Cre)
Fgf18
WNT signaling
①③
Micrognathia, defected craniofacial bone
[36]
Mesenchymal cell (Twist1-Cre)
Twist1
FGF signaling
②
Defected dentin and enamel, tooth abnormalities
[57]
Osteoblast (Prx1-Cre)
Ift20
WNT signaling
①
Craniostenosis
[58]
Osteoblast (Osx-Cre, Col1-Cre)
Fgfr3
WNT signaling
①
Osx: CATSHL syndrome, frontonasal dysplasia ...
2
... 随着精准医学的发展,针对关键细胞的靶向干预研究为疾病特征症状的治疗提供了新思路,研究者已着眼探究致病基因导致牙颌面畸形形成的关键细胞[27].近年来,以Cre-LoxP系统为代表的条件性基因编辑模式动物技术的发展,为研究基因功能异常导致骨畸形发生的关键细胞谱系提供了新的途径.环化重组酶(cyclization recombinant enzyme,Cre)是一种位点特异性DNA重组酶,可以识别侧翼LoxP(locus of X-over P1)序列,导致2个LoxP位点之间序列发生重组,当2个LoxP位点同向分布于同一条DNA序列中时,2个LoxP位点之间的DNA片段将被切除.因此,通过在特征标记的细胞中表达Cre,即可在此特征细胞中进行条件性的基因编辑,实现研究关键细胞中关键因子功能的实验目的.目前,神经嵴细胞(neural crest cell,NCC)的Wnt1、性别决定区Y框蛋白9(sex determining region Y box protein,Sox9)[28],成骨细胞的配对相关同源框1(paired related homeobox 1,Prx1)、成骨相关转录因子(osterix,Osx)、骨钙蛋白(osteocalcin,Ocn)、Ⅰ型胶原蛋白A1(collagen type 1 A1,Col1a1)[3],骨细胞的牙本质基质蛋白(dentin matrix protein 1,Dmp1)[29],成软骨细胞的Ⅱ型胶原蛋白(collagen type 2,Col2)、真皮表达蛋白(dermis-expressed protein 1,Dermo1)[30],破骨细胞的溶菌酶C2蛋白(lysozyme C-2,Lysm)、组织蛋白酶K(cathepsin K,Ctsk)[31],上皮细胞的角蛋白14(cytokeratin 14,Krt14),第一鳃弓细胞的桩蛋白2(paired box protein 2,Pax2)、心脏神经嵴衍生物蛋白2(heart and neural crest derivative-expressed protein 2,Hand2)[32],腭间充质细胞的阴离子交换蛋白2(odd-skipped related 2,Osr2)[33]等细胞谱系的关键致病基因被敲除后均可呈现出不同程度的牙颌面畸形(表1).值得注意的是,研究者发现,在特定细胞谱系中敲除关键基因可模拟牙颌面骨畸形综合征,如在成骨细胞而非破骨细胞中STAT3信号失活可导致常染色体显性高IgE综合征(autosomal dominant hyper IgE syndrome,AD-HIES)样颅颌面骨畸形[3],为早期靶向干预的发展提供了更为精准的修饰期望与目的细胞.但目前许多疾病模型仍停留在全基因敲除阶段,尽管通过部分体内或体外干预得到了一定的治疗效果,但对这种干预作用于何种细胞、恢复了该细胞何种功能尚无法解答.因此,在精准医学飞速发展的当下,运用条件性基因编辑动物研究疾病致病机制,是开发及优化疾病靶向干预策略的重要方向. ...
Defective ameloblast and odontoblast differentiation
[76]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
β-catenin
WNT signaling
④
Cleft palate
[80]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
Runx2
RA signaling
④
Cleft palate
[33]
Pharyngeal endoderm cell (Foxg1-Cre)
Tbx1
Unclear
①③
Velo-cardio-facial syndrome
[81]
Note: ①—parietal/frontal bone abnormality; ②—dental abnormality; ③—jaw abnormality; ④—cleft palate. “‒” represents not ① or ② or ③ or ④. Prrx1—paired related homeobox 1; Foxg1—forkhead box protein G1; Med23—mediator complex subunit 23; Foxf2—forkhead box protein F2; Setdb1—SET domain, bifurcated 1; Ift20—intraflagellar transport protein 20; G9a—histone-lysine N-methyltransferase G9a; Tak1—transforming growth factor-beta-activated kinase 1; Tgfbr2—transforming growth factor, beta receptor Ⅱ; Nell1—NEL-like protein 1; Dlx3—distal-less homeobox 3; Yap/Taz—Yes-associated protein/tafazzin; Tfap2—transcription factor activating enhancer binding protein 2; Brca1/2—breast cancer susceptibility gene 1/2; Smo—smoothened, frizzled class receptor; Fgfr3—fibroblast growth factor receptor 3; Rar—retinoic acid receptor; Ror2—receptor tyrosine kinase like orphan receptor 2; Cbfb—core binding factor beta; Recql4—RecQ like helicase 4; Wls—wntless WNT ligand secretion mediator; Gα—G protein alpha; Efnb1—ephrin B1; Atg5—autophagy related protein 5; Fip200—focal adhesion kinase family interacting protein of 200 000; Tbx1—T-box protein 1; CATSHL syndrome—camptodactyly, tall stature, and hearing loss syndrome. ...
Branchio-oto-renal syndrome, micrognathia, cleft palate with ankyloglossia
[37]
NCC (Wnt1-Cre)
Bmp2
BMP signaling
③④
Pierre Robin syndrome
[38]
NCC (Wnt1-Cre)
Bmp4
BMP signaling
②③④
Severe deformation of molar buds, palate, and maxilla-mandibular bony structures; defected Meckel's cartilage
[32]
NCC (Wnt1-Cre)
Foxf2
SHH signaling
④
Cleft palate
[39]
NCC (Wnt1-Cre)
Setdb1
BMP signaling, WNT signaling
④
Cleft palate
[40]
NCC (Wnt1-Cre)
Ift20
WNT signaling
①③④
Death shortly after birth due to difficulties in feeding and breathing, severe craniofacial malformation, loss of craniofacial bones, frontonasal dysplasia, micrognathia, cleft palate
[41-42]
NCC (Wnt1-Cre, Sox9-Cre)
G9a
SHH signaling
Wnt1: ①③; Sox9: ①②
Wnt1: death shortly after birth, shortened maxilla, restricted airway, frontonasal dysplasia ...
2
... Key cell lineages and related genes responsible for dento-maxillofacial abnormalities through conditional gene-edited miceTab 1
Branchio-oto-renal syndrome, micrognathia, cleft palate with ankyloglossia
[37]
NCC (Wnt1-Cre)
Bmp2
BMP signaling
③④
Pierre Robin syndrome
[38]
NCC (Wnt1-Cre)
Bmp4
BMP signaling
②③④
Severe deformation of molar buds, palate, and maxilla-mandibular bony structures; defected Meckel's cartilage
[32]
NCC (Wnt1-Cre)
Foxf2
SHH signaling
④
Cleft palate
[39]
NCC (Wnt1-Cre)
Setdb1
BMP signaling, WNT signaling
④
Cleft palate
[40]
NCC (Wnt1-Cre)
Ift20
WNT signaling
①③④
Death shortly after birth due to difficulties in feeding and breathing, severe craniofacial malformation, loss of craniofacial bones, frontonasal dysplasia, micrognathia, cleft palate
[41-42]
NCC (Wnt1-Cre, Sox9-Cre)
G9a
SHH signaling
Wnt1: ①③; Sox9: ①②
Wnt1: death shortly after birth, shortened maxilla, restricted airway, frontonasal dysplasia ...
... RA signaling
①③④
Branchio-oto-renal syndrome, midface cleft, defected craniofacial bone
[51]
NCC (Wnt1-Cre)
Twist1
FGF signaling
①
Defected craniofacial bone
[52]
NCC (Wnt1-Cre)
Brca1/2
P53 signaling
①④
Craniostenosis, cleft palate, defected craniofacial bone
[53]
NCC (Wnt1-Cre)
Smo
SHH signaling
①
Defected craniofacial bone
[54]
NCC (Wnt1-Cre)
Ldb1
WNT signaling
④
Cleft palate
[55]
NCC (Wnt1-Cre)
Osx
FGF signaling
①③
Micrognathia, defected craniofacial bone
[28]
First branchial arch mesenchymal cell (Pax2-Cre)
Bmp4
BMP signaling
‒
Bilateral hyperplastic tissues
[32]
First branchial arch mesenchymal cell (Hand2-Cre)
Twist1
FGF signaling
③④
Micrognathia, cleft palate
[56]
Mesenchymal cell (Twist2-Cre)
Fgf18
WNT signaling
①③
Micrognathia, defected craniofacial bone
[36]
Mesenchymal cell (Twist1-Cre)
Twist1
FGF signaling
②
Defected dentin and enamel, tooth abnormalities
[57]
Osteoblast (Prx1-Cre)
Ift20
WNT signaling
①
Craniostenosis
[58]
Osteoblast (Osx-Cre, Col1-Cre)
Fgfr3
WNT signaling
①
Osx: CATSHL syndrome, frontonasal dysplasia ...
1
... Key cell lineages and related genes responsible for dento-maxillofacial abnormalities through conditional gene-edited miceTab 1
Branchio-oto-renal syndrome, micrognathia, cleft palate with ankyloglossia
[37]
NCC (Wnt1-Cre)
Bmp2
BMP signaling
③④
Pierre Robin syndrome
[38]
NCC (Wnt1-Cre)
Bmp4
BMP signaling
②③④
Severe deformation of molar buds, palate, and maxilla-mandibular bony structures; defected Meckel's cartilage
[32]
NCC (Wnt1-Cre)
Foxf2
SHH signaling
④
Cleft palate
[39]
NCC (Wnt1-Cre)
Setdb1
BMP signaling, WNT signaling
④
Cleft palate
[40]
NCC (Wnt1-Cre)
Ift20
WNT signaling
①③④
Death shortly after birth due to difficulties in feeding and breathing, severe craniofacial malformation, loss of craniofacial bones, frontonasal dysplasia, micrognathia, cleft palate
[41-42]
NCC (Wnt1-Cre, Sox9-Cre)
G9a
SHH signaling
Wnt1: ①③; Sox9: ①②
Wnt1: death shortly after birth, shortened maxilla, restricted airway, frontonasal dysplasia ...
1
... Key cell lineages and related genes responsible for dento-maxillofacial abnormalities through conditional gene-edited miceTab 1
Branchio-oto-renal syndrome, micrognathia, cleft palate with ankyloglossia
[37]
NCC (Wnt1-Cre)
Bmp2
BMP signaling
③④
Pierre Robin syndrome
[38]
NCC (Wnt1-Cre)
Bmp4
BMP signaling
②③④
Severe deformation of molar buds, palate, and maxilla-mandibular bony structures; defected Meckel's cartilage
[32]
NCC (Wnt1-Cre)
Foxf2
SHH signaling
④
Cleft palate
[39]
NCC (Wnt1-Cre)
Setdb1
BMP signaling, WNT signaling
④
Cleft palate
[40]
NCC (Wnt1-Cre)
Ift20
WNT signaling
①③④
Death shortly after birth due to difficulties in feeding and breathing, severe craniofacial malformation, loss of craniofacial bones, frontonasal dysplasia, micrognathia, cleft palate
[41-42]
NCC (Wnt1-Cre, Sox9-Cre)
G9a
SHH signaling
Wnt1: ①③; Sox9: ①②
Wnt1: death shortly after birth, shortened maxilla, restricted airway, frontonasal dysplasia ...
1
... Key cell lineages and related genes responsible for dento-maxillofacial abnormalities through conditional gene-edited miceTab 1
Branchio-oto-renal syndrome, micrognathia, cleft palate with ankyloglossia
[37]
NCC (Wnt1-Cre)
Bmp2
BMP signaling
③④
Pierre Robin syndrome
[38]
NCC (Wnt1-Cre)
Bmp4
BMP signaling
②③④
Severe deformation of molar buds, palate, and maxilla-mandibular bony structures; defected Meckel's cartilage
[32]
NCC (Wnt1-Cre)
Foxf2
SHH signaling
④
Cleft palate
[39]
NCC (Wnt1-Cre)
Setdb1
BMP signaling, WNT signaling
④
Cleft palate
[40]
NCC (Wnt1-Cre)
Ift20
WNT signaling
①③④
Death shortly after birth due to difficulties in feeding and breathing, severe craniofacial malformation, loss of craniofacial bones, frontonasal dysplasia, micrognathia, cleft palate
[41-42]
NCC (Wnt1-Cre, Sox9-Cre)
G9a
SHH signaling
Wnt1: ①③; Sox9: ①②
Wnt1: death shortly after birth, shortened maxilla, restricted airway, frontonasal dysplasia ...
1
... Key cell lineages and related genes responsible for dento-maxillofacial abnormalities through conditional gene-edited miceTab 1
Branchio-oto-renal syndrome, micrognathia, cleft palate with ankyloglossia
[37]
NCC (Wnt1-Cre)
Bmp2
BMP signaling
③④
Pierre Robin syndrome
[38]
NCC (Wnt1-Cre)
Bmp4
BMP signaling
②③④
Severe deformation of molar buds, palate, and maxilla-mandibular bony structures; defected Meckel's cartilage
[32]
NCC (Wnt1-Cre)
Foxf2
SHH signaling
④
Cleft palate
[39]
NCC (Wnt1-Cre)
Setdb1
BMP signaling, WNT signaling
④
Cleft palate
[40]
NCC (Wnt1-Cre)
Ift20
WNT signaling
①③④
Death shortly after birth due to difficulties in feeding and breathing, severe craniofacial malformation, loss of craniofacial bones, frontonasal dysplasia, micrognathia, cleft palate
[41-42]
NCC (Wnt1-Cre, Sox9-Cre)
G9a
SHH signaling
Wnt1: ①③; Sox9: ①②
Wnt1: death shortly after birth, shortened maxilla, restricted airway, frontonasal dysplasia ...
1
... Key cell lineages and related genes responsible for dento-maxillofacial abnormalities through conditional gene-edited miceTab 1
Branchio-oto-renal syndrome, micrognathia, cleft palate with ankyloglossia
[37]
NCC (Wnt1-Cre)
Bmp2
BMP signaling
③④
Pierre Robin syndrome
[38]
NCC (Wnt1-Cre)
Bmp4
BMP signaling
②③④
Severe deformation of molar buds, palate, and maxilla-mandibular bony structures; defected Meckel's cartilage
[32]
NCC (Wnt1-Cre)
Foxf2
SHH signaling
④
Cleft palate
[39]
NCC (Wnt1-Cre)
Setdb1
BMP signaling, WNT signaling
④
Cleft palate
[40]
NCC (Wnt1-Cre)
Ift20
WNT signaling
①③④
Death shortly after birth due to difficulties in feeding and breathing, severe craniofacial malformation, loss of craniofacial bones, frontonasal dysplasia, micrognathia, cleft palate
[41-42]
NCC (Wnt1-Cre, Sox9-Cre)
G9a
SHH signaling
Wnt1: ①③; Sox9: ①②
Wnt1: death shortly after birth, shortened maxilla, restricted airway, frontonasal dysplasia ...
2
... Key cell lineages and related genes responsible for dento-maxillofacial abnormalities through conditional gene-edited miceTab 1
Branchio-oto-renal syndrome, micrognathia, cleft palate with ankyloglossia
[37]
NCC (Wnt1-Cre)
Bmp2
BMP signaling
③④
Pierre Robin syndrome
[38]
NCC (Wnt1-Cre)
Bmp4
BMP signaling
②③④
Severe deformation of molar buds, palate, and maxilla-mandibular bony structures; defected Meckel's cartilage
[32]
NCC (Wnt1-Cre)
Foxf2
SHH signaling
④
Cleft palate
[39]
NCC (Wnt1-Cre)
Setdb1
BMP signaling, WNT signaling
④
Cleft palate
[40]
NCC (Wnt1-Cre)
Ift20
WNT signaling
①③④
Death shortly after birth due to difficulties in feeding and breathing, severe craniofacial malformation, loss of craniofacial bones, frontonasal dysplasia, micrognathia, cleft palate
[41-42]
NCC (Wnt1-Cre, Sox9-Cre)
G9a
SHH signaling
Wnt1: ①③; Sox9: ①②
Wnt1: death shortly after birth, shortened maxilla, restricted airway, frontonasal dysplasia ...
Defective ameloblast and odontoblast differentiation
[76]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
β-catenin
WNT signaling
④
Cleft palate
[80]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
Runx2
RA signaling
④
Cleft palate
[33]
Pharyngeal endoderm cell (Foxg1-Cre)
Tbx1
Unclear
①③
Velo-cardio-facial syndrome
[81]
Note: ①—parietal/frontal bone abnormality; ②—dental abnormality; ③—jaw abnormality; ④—cleft palate. “‒” represents not ① or ② or ③ or ④. Prrx1—paired related homeobox 1; Foxg1—forkhead box protein G1; Med23—mediator complex subunit 23; Foxf2—forkhead box protein F2; Setdb1—SET domain, bifurcated 1; Ift20—intraflagellar transport protein 20; G9a—histone-lysine N-methyltransferase G9a; Tak1—transforming growth factor-beta-activated kinase 1; Tgfbr2—transforming growth factor, beta receptor Ⅱ; Nell1—NEL-like protein 1; Dlx3—distal-less homeobox 3; Yap/Taz—Yes-associated protein/tafazzin; Tfap2—transcription factor activating enhancer binding protein 2; Brca1/2—breast cancer susceptibility gene 1/2; Smo—smoothened, frizzled class receptor; Fgfr3—fibroblast growth factor receptor 3; Rar—retinoic acid receptor; Ror2—receptor tyrosine kinase like orphan receptor 2; Cbfb—core binding factor beta; Recql4—RecQ like helicase 4; Wls—wntless WNT ligand secretion mediator; Gα—G protein alpha; Efnb1—ephrin B1; Atg5—autophagy related protein 5; Fip200—focal adhesion kinase family interacting protein of 200 000; Tbx1—T-box protein 1; CATSHL syndrome—camptodactyly, tall stature, and hearing loss syndrome. ...
1
... Sox9: death shortly after birth, cranial skeletal dysplasia, smaller tooth germ, impaired tooth inner enamel epithelium
[43-45]
NCC (Wnt1-Cre)
Tak1
FGF signaling
③④
Pierre Robin syndrome, micrognathia, abnormal tongue, cleft palate
[46]
NCC (Wnt1-Cre)
Tgfbr2
FGF signaling
‒
Abnormal tongue
[47]
NCC (Wnt1-Cre)
Nell1
WNT signaling
①
Craniosynostosis
[48]
NCC (Wnt1-Cre)
Dlx3
WNT signaling
①③
Tricho-dento-osseous syndrome, defected frontal bone and mandible
Defective ameloblast and odontoblast differentiation
[76]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
β-catenin
WNT signaling
④
Cleft palate
[80]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
Runx2
RA signaling
④
Cleft palate
[33]
Pharyngeal endoderm cell (Foxg1-Cre)
Tbx1
Unclear
①③
Velo-cardio-facial syndrome
[81]
Note: ①—parietal/frontal bone abnormality; ②—dental abnormality; ③—jaw abnormality; ④—cleft palate. “‒” represents not ① or ② or ③ or ④. Prrx1—paired related homeobox 1; Foxg1—forkhead box protein G1; Med23—mediator complex subunit 23; Foxf2—forkhead box protein F2; Setdb1—SET domain, bifurcated 1; Ift20—intraflagellar transport protein 20; G9a—histone-lysine N-methyltransferase G9a; Tak1—transforming growth factor-beta-activated kinase 1; Tgfbr2—transforming growth factor, beta receptor Ⅱ; Nell1—NEL-like protein 1; Dlx3—distal-less homeobox 3; Yap/Taz—Yes-associated protein/tafazzin; Tfap2—transcription factor activating enhancer binding protein 2; Brca1/2—breast cancer susceptibility gene 1/2; Smo—smoothened, frizzled class receptor; Fgfr3—fibroblast growth factor receptor 3; Rar—retinoic acid receptor; Ror2—receptor tyrosine kinase like orphan receptor 2; Cbfb—core binding factor beta; Recql4—RecQ like helicase 4; Wls—wntless WNT ligand secretion mediator; Gα—G protein alpha; Efnb1—ephrin B1; Atg5—autophagy related protein 5; Fip200—focal adhesion kinase family interacting protein of 200 000; Tbx1—T-box protein 1; CATSHL syndrome—camptodactyly, tall stature, and hearing loss syndrome. ...
Defective ameloblast and odontoblast differentiation
[76]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
β-catenin
WNT signaling
④
Cleft palate
[80]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
Runx2
RA signaling
④
Cleft palate
[33]
Pharyngeal endoderm cell (Foxg1-Cre)
Tbx1
Unclear
①③
Velo-cardio-facial syndrome
[81]
Note: ①—parietal/frontal bone abnormality; ②—dental abnormality; ③—jaw abnormality; ④—cleft palate. “‒” represents not ① or ② or ③ or ④. Prrx1—paired related homeobox 1; Foxg1—forkhead box protein G1; Med23—mediator complex subunit 23; Foxf2—forkhead box protein F2; Setdb1—SET domain, bifurcated 1; Ift20—intraflagellar transport protein 20; G9a—histone-lysine N-methyltransferase G9a; Tak1—transforming growth factor-beta-activated kinase 1; Tgfbr2—transforming growth factor, beta receptor Ⅱ; Nell1—NEL-like protein 1; Dlx3—distal-less homeobox 3; Yap/Taz—Yes-associated protein/tafazzin; Tfap2—transcription factor activating enhancer binding protein 2; Brca1/2—breast cancer susceptibility gene 1/2; Smo—smoothened, frizzled class receptor; Fgfr3—fibroblast growth factor receptor 3; Rar—retinoic acid receptor; Ror2—receptor tyrosine kinase like orphan receptor 2; Cbfb—core binding factor beta; Recql4—RecQ like helicase 4; Wls—wntless WNT ligand secretion mediator; Gα—G protein alpha; Efnb1—ephrin B1; Atg5—autophagy related protein 5; Fip200—focal adhesion kinase family interacting protein of 200 000; Tbx1—T-box protein 1; CATSHL syndrome—camptodactyly, tall stature, and hearing loss syndrome. ...
Defective ameloblast and odontoblast differentiation
[76]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
β-catenin
WNT signaling
④
Cleft palate
[80]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
Runx2
RA signaling
④
Cleft palate
[33]
Pharyngeal endoderm cell (Foxg1-Cre)
Tbx1
Unclear
①③
Velo-cardio-facial syndrome
[81]
Note: ①—parietal/frontal bone abnormality; ②—dental abnormality; ③—jaw abnormality; ④—cleft palate. “‒” represents not ① or ② or ③ or ④. Prrx1—paired related homeobox 1; Foxg1—forkhead box protein G1; Med23—mediator complex subunit 23; Foxf2—forkhead box protein F2; Setdb1—SET domain, bifurcated 1; Ift20—intraflagellar transport protein 20; G9a—histone-lysine N-methyltransferase G9a; Tak1—transforming growth factor-beta-activated kinase 1; Tgfbr2—transforming growth factor, beta receptor Ⅱ; Nell1—NEL-like protein 1; Dlx3—distal-less homeobox 3; Yap/Taz—Yes-associated protein/tafazzin; Tfap2—transcription factor activating enhancer binding protein 2; Brca1/2—breast cancer susceptibility gene 1/2; Smo—smoothened, frizzled class receptor; Fgfr3—fibroblast growth factor receptor 3; Rar—retinoic acid receptor; Ror2—receptor tyrosine kinase like orphan receptor 2; Cbfb—core binding factor beta; Recql4—RecQ like helicase 4; Wls—wntless WNT ligand secretion mediator; Gα—G protein alpha; Efnb1—ephrin B1; Atg5—autophagy related protein 5; Fip200—focal adhesion kinase family interacting protein of 200 000; Tbx1—T-box protein 1; CATSHL syndrome—camptodactyly, tall stature, and hearing loss syndrome. ...
Defective ameloblast and odontoblast differentiation
[76]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
β-catenin
WNT signaling
④
Cleft palate
[80]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
Runx2
RA signaling
④
Cleft palate
[33]
Pharyngeal endoderm cell (Foxg1-Cre)
Tbx1
Unclear
①③
Velo-cardio-facial syndrome
[81]
Note: ①—parietal/frontal bone abnormality; ②—dental abnormality; ③—jaw abnormality; ④—cleft palate. “‒” represents not ① or ② or ③ or ④. Prrx1—paired related homeobox 1; Foxg1—forkhead box protein G1; Med23—mediator complex subunit 23; Foxf2—forkhead box protein F2; Setdb1—SET domain, bifurcated 1; Ift20—intraflagellar transport protein 20; G9a—histone-lysine N-methyltransferase G9a; Tak1—transforming growth factor-beta-activated kinase 1; Tgfbr2—transforming growth factor, beta receptor Ⅱ; Nell1—NEL-like protein 1; Dlx3—distal-less homeobox 3; Yap/Taz—Yes-associated protein/tafazzin; Tfap2—transcription factor activating enhancer binding protein 2; Brca1/2—breast cancer susceptibility gene 1/2; Smo—smoothened, frizzled class receptor; Fgfr3—fibroblast growth factor receptor 3; Rar—retinoic acid receptor; Ror2—receptor tyrosine kinase like orphan receptor 2; Cbfb—core binding factor beta; Recql4—RecQ like helicase 4; Wls—wntless WNT ligand secretion mediator; Gα—G protein alpha; Efnb1—ephrin B1; Atg5—autophagy related protein 5; Fip200—focal adhesion kinase family interacting protein of 200 000; Tbx1—T-box protein 1; CATSHL syndrome—camptodactyly, tall stature, and hearing loss syndrome. ...
Defective ameloblast and odontoblast differentiation
[76]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
β-catenin
WNT signaling
④
Cleft palate
[80]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
Runx2
RA signaling
④
Cleft palate
[33]
Pharyngeal endoderm cell (Foxg1-Cre)
Tbx1
Unclear
①③
Velo-cardio-facial syndrome
[81]
Note: ①—parietal/frontal bone abnormality; ②—dental abnormality; ③—jaw abnormality; ④—cleft palate. “‒” represents not ① or ② or ③ or ④. Prrx1—paired related homeobox 1; Foxg1—forkhead box protein G1; Med23—mediator complex subunit 23; Foxf2—forkhead box protein F2; Setdb1—SET domain, bifurcated 1; Ift20—intraflagellar transport protein 20; G9a—histone-lysine N-methyltransferase G9a; Tak1—transforming growth factor-beta-activated kinase 1; Tgfbr2—transforming growth factor, beta receptor Ⅱ; Nell1—NEL-like protein 1; Dlx3—distal-less homeobox 3; Yap/Taz—Yes-associated protein/tafazzin; Tfap2—transcription factor activating enhancer binding protein 2; Brca1/2—breast cancer susceptibility gene 1/2; Smo—smoothened, frizzled class receptor; Fgfr3—fibroblast growth factor receptor 3; Rar—retinoic acid receptor; Ror2—receptor tyrosine kinase like orphan receptor 2; Cbfb—core binding factor beta; Recql4—RecQ like helicase 4; Wls—wntless WNT ligand secretion mediator; Gα—G protein alpha; Efnb1—ephrin B1; Atg5—autophagy related protein 5; Fip200—focal adhesion kinase family interacting protein of 200 000; Tbx1—T-box protein 1; CATSHL syndrome—camptodactyly, tall stature, and hearing loss syndrome. ...
Defective ameloblast and odontoblast differentiation
[76]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
β-catenin
WNT signaling
④
Cleft palate
[80]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
Runx2
RA signaling
④
Cleft palate
[33]
Pharyngeal endoderm cell (Foxg1-Cre)
Tbx1
Unclear
①③
Velo-cardio-facial syndrome
[81]
Note: ①—parietal/frontal bone abnormality; ②—dental abnormality; ③—jaw abnormality; ④—cleft palate. “‒” represents not ① or ② or ③ or ④. Prrx1—paired related homeobox 1; Foxg1—forkhead box protein G1; Med23—mediator complex subunit 23; Foxf2—forkhead box protein F2; Setdb1—SET domain, bifurcated 1; Ift20—intraflagellar transport protein 20; G9a—histone-lysine N-methyltransferase G9a; Tak1—transforming growth factor-beta-activated kinase 1; Tgfbr2—transforming growth factor, beta receptor Ⅱ; Nell1—NEL-like protein 1; Dlx3—distal-less homeobox 3; Yap/Taz—Yes-associated protein/tafazzin; Tfap2—transcription factor activating enhancer binding protein 2; Brca1/2—breast cancer susceptibility gene 1/2; Smo—smoothened, frizzled class receptor; Fgfr3—fibroblast growth factor receptor 3; Rar—retinoic acid receptor; Ror2—receptor tyrosine kinase like orphan receptor 2; Cbfb—core binding factor beta; Recql4—RecQ like helicase 4; Wls—wntless WNT ligand secretion mediator; Gα—G protein alpha; Efnb1—ephrin B1; Atg5—autophagy related protein 5; Fip200—focal adhesion kinase family interacting protein of 200 000; Tbx1—T-box protein 1; CATSHL syndrome—camptodactyly, tall stature, and hearing loss syndrome. ...
Defective ameloblast and odontoblast differentiation
[76]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
β-catenin
WNT signaling
④
Cleft palate
[80]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
Runx2
RA signaling
④
Cleft palate
[33]
Pharyngeal endoderm cell (Foxg1-Cre)
Tbx1
Unclear
①③
Velo-cardio-facial syndrome
[81]
Note: ①—parietal/frontal bone abnormality; ②—dental abnormality; ③—jaw abnormality; ④—cleft palate. “‒” represents not ① or ② or ③ or ④. Prrx1—paired related homeobox 1; Foxg1—forkhead box protein G1; Med23—mediator complex subunit 23; Foxf2—forkhead box protein F2; Setdb1—SET domain, bifurcated 1; Ift20—intraflagellar transport protein 20; G9a—histone-lysine N-methyltransferase G9a; Tak1—transforming growth factor-beta-activated kinase 1; Tgfbr2—transforming growth factor, beta receptor Ⅱ; Nell1—NEL-like protein 1; Dlx3—distal-less homeobox 3; Yap/Taz—Yes-associated protein/tafazzin; Tfap2—transcription factor activating enhancer binding protein 2; Brca1/2—breast cancer susceptibility gene 1/2; Smo—smoothened, frizzled class receptor; Fgfr3—fibroblast growth factor receptor 3; Rar—retinoic acid receptor; Ror2—receptor tyrosine kinase like orphan receptor 2; Cbfb—core binding factor beta; Recql4—RecQ like helicase 4; Wls—wntless WNT ligand secretion mediator; Gα—G protein alpha; Efnb1—ephrin B1; Atg5—autophagy related protein 5; Fip200—focal adhesion kinase family interacting protein of 200 000; Tbx1—T-box protein 1; CATSHL syndrome—camptodactyly, tall stature, and hearing loss syndrome. ...
Defective ameloblast and odontoblast differentiation
[76]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
β-catenin
WNT signaling
④
Cleft palate
[80]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
Runx2
RA signaling
④
Cleft palate
[33]
Pharyngeal endoderm cell (Foxg1-Cre)
Tbx1
Unclear
①③
Velo-cardio-facial syndrome
[81]
Note: ①—parietal/frontal bone abnormality; ②—dental abnormality; ③—jaw abnormality; ④—cleft palate. “‒” represents not ① or ② or ③ or ④. Prrx1—paired related homeobox 1; Foxg1—forkhead box protein G1; Med23—mediator complex subunit 23; Foxf2—forkhead box protein F2; Setdb1—SET domain, bifurcated 1; Ift20—intraflagellar transport protein 20; G9a—histone-lysine N-methyltransferase G9a; Tak1—transforming growth factor-beta-activated kinase 1; Tgfbr2—transforming growth factor, beta receptor Ⅱ; Nell1—NEL-like protein 1; Dlx3—distal-less homeobox 3; Yap/Taz—Yes-associated protein/tafazzin; Tfap2—transcription factor activating enhancer binding protein 2; Brca1/2—breast cancer susceptibility gene 1/2; Smo—smoothened, frizzled class receptor; Fgfr3—fibroblast growth factor receptor 3; Rar—retinoic acid receptor; Ror2—receptor tyrosine kinase like orphan receptor 2; Cbfb—core binding factor beta; Recql4—RecQ like helicase 4; Wls—wntless WNT ligand secretion mediator; Gα—G protein alpha; Efnb1—ephrin B1; Atg5—autophagy related protein 5; Fip200—focal adhesion kinase family interacting protein of 200 000; Tbx1—T-box protein 1; CATSHL syndrome—camptodactyly, tall stature, and hearing loss syndrome. ...
Defective ameloblast and odontoblast differentiation
[76]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
β-catenin
WNT signaling
④
Cleft palate
[80]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
Runx2
RA signaling
④
Cleft palate
[33]
Pharyngeal endoderm cell (Foxg1-Cre)
Tbx1
Unclear
①③
Velo-cardio-facial syndrome
[81]
Note: ①—parietal/frontal bone abnormality; ②—dental abnormality; ③—jaw abnormality; ④—cleft palate. “‒” represents not ① or ② or ③ or ④. Prrx1—paired related homeobox 1; Foxg1—forkhead box protein G1; Med23—mediator complex subunit 23; Foxf2—forkhead box protein F2; Setdb1—SET domain, bifurcated 1; Ift20—intraflagellar transport protein 20; G9a—histone-lysine N-methyltransferase G9a; Tak1—transforming growth factor-beta-activated kinase 1; Tgfbr2—transforming growth factor, beta receptor Ⅱ; Nell1—NEL-like protein 1; Dlx3—distal-less homeobox 3; Yap/Taz—Yes-associated protein/tafazzin; Tfap2—transcription factor activating enhancer binding protein 2; Brca1/2—breast cancer susceptibility gene 1/2; Smo—smoothened, frizzled class receptor; Fgfr3—fibroblast growth factor receptor 3; Rar—retinoic acid receptor; Ror2—receptor tyrosine kinase like orphan receptor 2; Cbfb—core binding factor beta; Recql4—RecQ like helicase 4; Wls—wntless WNT ligand secretion mediator; Gα—G protein alpha; Efnb1—ephrin B1; Atg5—autophagy related protein 5; Fip200—focal adhesion kinase family interacting protein of 200 000; Tbx1—T-box protein 1; CATSHL syndrome—camptodactyly, tall stature, and hearing loss syndrome. ...
Defective ameloblast and odontoblast differentiation
[76]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
β-catenin
WNT signaling
④
Cleft palate
[80]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
Runx2
RA signaling
④
Cleft palate
[33]
Pharyngeal endoderm cell (Foxg1-Cre)
Tbx1
Unclear
①③
Velo-cardio-facial syndrome
[81]
Note: ①—parietal/frontal bone abnormality; ②—dental abnormality; ③—jaw abnormality; ④—cleft palate. “‒” represents not ① or ② or ③ or ④. Prrx1—paired related homeobox 1; Foxg1—forkhead box protein G1; Med23—mediator complex subunit 23; Foxf2—forkhead box protein F2; Setdb1—SET domain, bifurcated 1; Ift20—intraflagellar transport protein 20; G9a—histone-lysine N-methyltransferase G9a; Tak1—transforming growth factor-beta-activated kinase 1; Tgfbr2—transforming growth factor, beta receptor Ⅱ; Nell1—NEL-like protein 1; Dlx3—distal-less homeobox 3; Yap/Taz—Yes-associated protein/tafazzin; Tfap2—transcription factor activating enhancer binding protein 2; Brca1/2—breast cancer susceptibility gene 1/2; Smo—smoothened, frizzled class receptor; Fgfr3—fibroblast growth factor receptor 3; Rar—retinoic acid receptor; Ror2—receptor tyrosine kinase like orphan receptor 2; Cbfb—core binding factor beta; Recql4—RecQ like helicase 4; Wls—wntless WNT ligand secretion mediator; Gα—G protein alpha; Efnb1—ephrin B1; Atg5—autophagy related protein 5; Fip200—focal adhesion kinase family interacting protein of 200 000; Tbx1—T-box protein 1; CATSHL syndrome—camptodactyly, tall stature, and hearing loss syndrome. ...
Defective ameloblast and odontoblast differentiation
[76]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
β-catenin
WNT signaling
④
Cleft palate
[80]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
Runx2
RA signaling
④
Cleft palate
[33]
Pharyngeal endoderm cell (Foxg1-Cre)
Tbx1
Unclear
①③
Velo-cardio-facial syndrome
[81]
Note: ①—parietal/frontal bone abnormality; ②—dental abnormality; ③—jaw abnormality; ④—cleft palate. “‒” represents not ① or ② or ③ or ④. Prrx1—paired related homeobox 1; Foxg1—forkhead box protein G1; Med23—mediator complex subunit 23; Foxf2—forkhead box protein F2; Setdb1—SET domain, bifurcated 1; Ift20—intraflagellar transport protein 20; G9a—histone-lysine N-methyltransferase G9a; Tak1—transforming growth factor-beta-activated kinase 1; Tgfbr2—transforming growth factor, beta receptor Ⅱ; Nell1—NEL-like protein 1; Dlx3—distal-less homeobox 3; Yap/Taz—Yes-associated protein/tafazzin; Tfap2—transcription factor activating enhancer binding protein 2; Brca1/2—breast cancer susceptibility gene 1/2; Smo—smoothened, frizzled class receptor; Fgfr3—fibroblast growth factor receptor 3; Rar—retinoic acid receptor; Ror2—receptor tyrosine kinase like orphan receptor 2; Cbfb—core binding factor beta; Recql4—RecQ like helicase 4; Wls—wntless WNT ligand secretion mediator; Gα—G protein alpha; Efnb1—ephrin B1; Atg5—autophagy related protein 5; Fip200—focal adhesion kinase family interacting protein of 200 000; Tbx1—T-box protein 1; CATSHL syndrome—camptodactyly, tall stature, and hearing loss syndrome. ...
Defective ameloblast and odontoblast differentiation
[76]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
β-catenin
WNT signaling
④
Cleft palate
[80]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
Runx2
RA signaling
④
Cleft palate
[33]
Pharyngeal endoderm cell (Foxg1-Cre)
Tbx1
Unclear
①③
Velo-cardio-facial syndrome
[81]
Note: ①—parietal/frontal bone abnormality; ②—dental abnormality; ③—jaw abnormality; ④—cleft palate. “‒” represents not ① or ② or ③ or ④. Prrx1—paired related homeobox 1; Foxg1—forkhead box protein G1; Med23—mediator complex subunit 23; Foxf2—forkhead box protein F2; Setdb1—SET domain, bifurcated 1; Ift20—intraflagellar transport protein 20; G9a—histone-lysine N-methyltransferase G9a; Tak1—transforming growth factor-beta-activated kinase 1; Tgfbr2—transforming growth factor, beta receptor Ⅱ; Nell1—NEL-like protein 1; Dlx3—distal-less homeobox 3; Yap/Taz—Yes-associated protein/tafazzin; Tfap2—transcription factor activating enhancer binding protein 2; Brca1/2—breast cancer susceptibility gene 1/2; Smo—smoothened, frizzled class receptor; Fgfr3—fibroblast growth factor receptor 3; Rar—retinoic acid receptor; Ror2—receptor tyrosine kinase like orphan receptor 2; Cbfb—core binding factor beta; Recql4—RecQ like helicase 4; Wls—wntless WNT ligand secretion mediator; Gα—G protein alpha; Efnb1—ephrin B1; Atg5—autophagy related protein 5; Fip200—focal adhesion kinase family interacting protein of 200 000; Tbx1—T-box protein 1; CATSHL syndrome—camptodactyly, tall stature, and hearing loss syndrome. ...
... [75]
Epithelial cell (Krt14-Cre、Eiia-Cre)
Wnt10a
WNT signaling
②
Taurodontism
[76]
Epithelial cell (Krt14-Cre)
Tgfbr2
WNT signaling
④
Soft palate cleft
[77]
Epithelial cell (Krt14-Cre)
Dlx3
WNT signaling
②
Hypomineralized enamel
[78]
Epithelial cell (Krt14-Cre)
Fgfr2
FGF signaling
②
Retarded tooth formation, cleft palate
[79]
Epithelial cell (Shh-Cre)
Wls
WNT signaling
②
Defective ameloblast and odontoblast differentiation
[76]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
β-catenin
WNT signaling
④
Cleft palate
[80]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
Runx2
RA signaling
④
Cleft palate
[33]
Pharyngeal endoderm cell (Foxg1-Cre)
Tbx1
Unclear
①③
Velo-cardio-facial syndrome
[81]
Note: ①—parietal/frontal bone abnormality; ②—dental abnormality; ③—jaw abnormality; ④—cleft palate. “‒” represents not ① or ② or ③ or ④. Prrx1—paired related homeobox 1; Foxg1—forkhead box protein G1; Med23—mediator complex subunit 23; Foxf2—forkhead box protein F2; Setdb1—SET domain, bifurcated 1; Ift20—intraflagellar transport protein 20; G9a—histone-lysine N-methyltransferase G9a; Tak1—transforming growth factor-beta-activated kinase 1; Tgfbr2—transforming growth factor, beta receptor Ⅱ; Nell1—NEL-like protein 1; Dlx3—distal-less homeobox 3; Yap/Taz—Yes-associated protein/tafazzin; Tfap2—transcription factor activating enhancer binding protein 2; Brca1/2—breast cancer susceptibility gene 1/2; Smo—smoothened, frizzled class receptor; Fgfr3—fibroblast growth factor receptor 3; Rar—retinoic acid receptor; Ror2—receptor tyrosine kinase like orphan receptor 2; Cbfb—core binding factor beta; Recql4—RecQ like helicase 4; Wls—wntless WNT ligand secretion mediator; Gα—G protein alpha; Efnb1—ephrin B1; Atg5—autophagy related protein 5; Fip200—focal adhesion kinase family interacting protein of 200 000; Tbx1—T-box protein 1; CATSHL syndrome—camptodactyly, tall stature, and hearing loss syndrome. ...
Defective ameloblast and odontoblast differentiation
[76]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
β-catenin
WNT signaling
④
Cleft palate
[80]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
Runx2
RA signaling
④
Cleft palate
[33]
Pharyngeal endoderm cell (Foxg1-Cre)
Tbx1
Unclear
①③
Velo-cardio-facial syndrome
[81]
Note: ①—parietal/frontal bone abnormality; ②—dental abnormality; ③—jaw abnormality; ④—cleft palate. “‒” represents not ① or ② or ③ or ④. Prrx1—paired related homeobox 1; Foxg1—forkhead box protein G1; Med23—mediator complex subunit 23; Foxf2—forkhead box protein F2; Setdb1—SET domain, bifurcated 1; Ift20—intraflagellar transport protein 20; G9a—histone-lysine N-methyltransferase G9a; Tak1—transforming growth factor-beta-activated kinase 1; Tgfbr2—transforming growth factor, beta receptor Ⅱ; Nell1—NEL-like protein 1; Dlx3—distal-less homeobox 3; Yap/Taz—Yes-associated protein/tafazzin; Tfap2—transcription factor activating enhancer binding protein 2; Brca1/2—breast cancer susceptibility gene 1/2; Smo—smoothened, frizzled class receptor; Fgfr3—fibroblast growth factor receptor 3; Rar—retinoic acid receptor; Ror2—receptor tyrosine kinase like orphan receptor 2; Cbfb—core binding factor beta; Recql4—RecQ like helicase 4; Wls—wntless WNT ligand secretion mediator; Gα—G protein alpha; Efnb1—ephrin B1; Atg5—autophagy related protein 5; Fip200—focal adhesion kinase family interacting protein of 200 000; Tbx1—T-box protein 1; CATSHL syndrome—camptodactyly, tall stature, and hearing loss syndrome. ...
... [76]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
β-catenin
WNT signaling
④
Cleft palate
[80]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
Runx2
RA signaling
④
Cleft palate
[33]
Pharyngeal endoderm cell (Foxg1-Cre)
Tbx1
Unclear
①③
Velo-cardio-facial syndrome
[81]
Note: ①—parietal/frontal bone abnormality; ②—dental abnormality; ③—jaw abnormality; ④—cleft palate. “‒” represents not ① or ② or ③ or ④. Prrx1—paired related homeobox 1; Foxg1—forkhead box protein G1; Med23—mediator complex subunit 23; Foxf2—forkhead box protein F2; Setdb1—SET domain, bifurcated 1; Ift20—intraflagellar transport protein 20; G9a—histone-lysine N-methyltransferase G9a; Tak1—transforming growth factor-beta-activated kinase 1; Tgfbr2—transforming growth factor, beta receptor Ⅱ; Nell1—NEL-like protein 1; Dlx3—distal-less homeobox 3; Yap/Taz—Yes-associated protein/tafazzin; Tfap2—transcription factor activating enhancer binding protein 2; Brca1/2—breast cancer susceptibility gene 1/2; Smo—smoothened, frizzled class receptor; Fgfr3—fibroblast growth factor receptor 3; Rar—retinoic acid receptor; Ror2—receptor tyrosine kinase like orphan receptor 2; Cbfb—core binding factor beta; Recql4—RecQ like helicase 4; Wls—wntless WNT ligand secretion mediator; Gα—G protein alpha; Efnb1—ephrin B1; Atg5—autophagy related protein 5; Fip200—focal adhesion kinase family interacting protein of 200 000; Tbx1—T-box protein 1; CATSHL syndrome—camptodactyly, tall stature, and hearing loss syndrome. ...
Defective ameloblast and odontoblast differentiation
[76]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
β-catenin
WNT signaling
④
Cleft palate
[80]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
Runx2
RA signaling
④
Cleft palate
[33]
Pharyngeal endoderm cell (Foxg1-Cre)
Tbx1
Unclear
①③
Velo-cardio-facial syndrome
[81]
Note: ①—parietal/frontal bone abnormality; ②—dental abnormality; ③—jaw abnormality; ④—cleft palate. “‒” represents not ① or ② or ③ or ④. Prrx1—paired related homeobox 1; Foxg1—forkhead box protein G1; Med23—mediator complex subunit 23; Foxf2—forkhead box protein F2; Setdb1—SET domain, bifurcated 1; Ift20—intraflagellar transport protein 20; G9a—histone-lysine N-methyltransferase G9a; Tak1—transforming growth factor-beta-activated kinase 1; Tgfbr2—transforming growth factor, beta receptor Ⅱ; Nell1—NEL-like protein 1; Dlx3—distal-less homeobox 3; Yap/Taz—Yes-associated protein/tafazzin; Tfap2—transcription factor activating enhancer binding protein 2; Brca1/2—breast cancer susceptibility gene 1/2; Smo—smoothened, frizzled class receptor; Fgfr3—fibroblast growth factor receptor 3; Rar—retinoic acid receptor; Ror2—receptor tyrosine kinase like orphan receptor 2; Cbfb—core binding factor beta; Recql4—RecQ like helicase 4; Wls—wntless WNT ligand secretion mediator; Gα—G protein alpha; Efnb1—ephrin B1; Atg5—autophagy related protein 5; Fip200—focal adhesion kinase family interacting protein of 200 000; Tbx1—T-box protein 1; CATSHL syndrome—camptodactyly, tall stature, and hearing loss syndrome. ...
Defective ameloblast and odontoblast differentiation
[76]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
β-catenin
WNT signaling
④
Cleft palate
[80]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
Runx2
RA signaling
④
Cleft palate
[33]
Pharyngeal endoderm cell (Foxg1-Cre)
Tbx1
Unclear
①③
Velo-cardio-facial syndrome
[81]
Note: ①—parietal/frontal bone abnormality; ②—dental abnormality; ③—jaw abnormality; ④—cleft palate. “‒” represents not ① or ② or ③ or ④. Prrx1—paired related homeobox 1; Foxg1—forkhead box protein G1; Med23—mediator complex subunit 23; Foxf2—forkhead box protein F2; Setdb1—SET domain, bifurcated 1; Ift20—intraflagellar transport protein 20; G9a—histone-lysine N-methyltransferase G9a; Tak1—transforming growth factor-beta-activated kinase 1; Tgfbr2—transforming growth factor, beta receptor Ⅱ; Nell1—NEL-like protein 1; Dlx3—distal-less homeobox 3; Yap/Taz—Yes-associated protein/tafazzin; Tfap2—transcription factor activating enhancer binding protein 2; Brca1/2—breast cancer susceptibility gene 1/2; Smo—smoothened, frizzled class receptor; Fgfr3—fibroblast growth factor receptor 3; Rar—retinoic acid receptor; Ror2—receptor tyrosine kinase like orphan receptor 2; Cbfb—core binding factor beta; Recql4—RecQ like helicase 4; Wls—wntless WNT ligand secretion mediator; Gα—G protein alpha; Efnb1—ephrin B1; Atg5—autophagy related protein 5; Fip200—focal adhesion kinase family interacting protein of 200 000; Tbx1—T-box protein 1; CATSHL syndrome—camptodactyly, tall stature, and hearing loss syndrome. ...
Defective ameloblast and odontoblast differentiation
[76]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
β-catenin
WNT signaling
④
Cleft palate
[80]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
Runx2
RA signaling
④
Cleft palate
[33]
Pharyngeal endoderm cell (Foxg1-Cre)
Tbx1
Unclear
①③
Velo-cardio-facial syndrome
[81]
Note: ①—parietal/frontal bone abnormality; ②—dental abnormality; ③—jaw abnormality; ④—cleft palate. “‒” represents not ① or ② or ③ or ④. Prrx1—paired related homeobox 1; Foxg1—forkhead box protein G1; Med23—mediator complex subunit 23; Foxf2—forkhead box protein F2; Setdb1—SET domain, bifurcated 1; Ift20—intraflagellar transport protein 20; G9a—histone-lysine N-methyltransferase G9a; Tak1—transforming growth factor-beta-activated kinase 1; Tgfbr2—transforming growth factor, beta receptor Ⅱ; Nell1—NEL-like protein 1; Dlx3—distal-less homeobox 3; Yap/Taz—Yes-associated protein/tafazzin; Tfap2—transcription factor activating enhancer binding protein 2; Brca1/2—breast cancer susceptibility gene 1/2; Smo—smoothened, frizzled class receptor; Fgfr3—fibroblast growth factor receptor 3; Rar—retinoic acid receptor; Ror2—receptor tyrosine kinase like orphan receptor 2; Cbfb—core binding factor beta; Recql4—RecQ like helicase 4; Wls—wntless WNT ligand secretion mediator; Gα—G protein alpha; Efnb1—ephrin B1; Atg5—autophagy related protein 5; Fip200—focal adhesion kinase family interacting protein of 200 000; Tbx1—T-box protein 1; CATSHL syndrome—camptodactyly, tall stature, and hearing loss syndrome. ...
Defective ameloblast and odontoblast differentiation
[76]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
β-catenin
WNT signaling
④
Cleft palate
[80]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
Runx2
RA signaling
④
Cleft palate
[33]
Pharyngeal endoderm cell (Foxg1-Cre)
Tbx1
Unclear
①③
Velo-cardio-facial syndrome
[81]
Note: ①—parietal/frontal bone abnormality; ②—dental abnormality; ③—jaw abnormality; ④—cleft palate. “‒” represents not ① or ② or ③ or ④. Prrx1—paired related homeobox 1; Foxg1—forkhead box protein G1; Med23—mediator complex subunit 23; Foxf2—forkhead box protein F2; Setdb1—SET domain, bifurcated 1; Ift20—intraflagellar transport protein 20; G9a—histone-lysine N-methyltransferase G9a; Tak1—transforming growth factor-beta-activated kinase 1; Tgfbr2—transforming growth factor, beta receptor Ⅱ; Nell1—NEL-like protein 1; Dlx3—distal-less homeobox 3; Yap/Taz—Yes-associated protein/tafazzin; Tfap2—transcription factor activating enhancer binding protein 2; Brca1/2—breast cancer susceptibility gene 1/2; Smo—smoothened, frizzled class receptor; Fgfr3—fibroblast growth factor receptor 3; Rar—retinoic acid receptor; Ror2—receptor tyrosine kinase like orphan receptor 2; Cbfb—core binding factor beta; Recql4—RecQ like helicase 4; Wls—wntless WNT ligand secretion mediator; Gα—G protein alpha; Efnb1—ephrin B1; Atg5—autophagy related protein 5; Fip200—focal adhesion kinase family interacting protein of 200 000; Tbx1—T-box protein 1; CATSHL syndrome—camptodactyly, tall stature, and hearing loss syndrome. ...
Defective ameloblast and odontoblast differentiation
[76]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
β-catenin
WNT signaling
④
Cleft palate
[80]
CNC-derived cell subset in the developing palatal mesenchyme (Osr2-Cre)
Runx2
RA signaling
④
Cleft palate
[33]
Pharyngeal endoderm cell (Foxg1-Cre)
Tbx1
Unclear
①③
Velo-cardio-facial syndrome
[81]
Note: ①—parietal/frontal bone abnormality; ②—dental abnormality; ③—jaw abnormality; ④—cleft palate. “‒” represents not ① or ② or ③ or ④. Prrx1—paired related homeobox 1; Foxg1—forkhead box protein G1; Med23—mediator complex subunit 23; Foxf2—forkhead box protein F2; Setdb1—SET domain, bifurcated 1; Ift20—intraflagellar transport protein 20; G9a—histone-lysine N-methyltransferase G9a; Tak1—transforming growth factor-beta-activated kinase 1; Tgfbr2—transforming growth factor, beta receptor Ⅱ; Nell1—NEL-like protein 1; Dlx3—distal-less homeobox 3; Yap/Taz—Yes-associated protein/tafazzin; Tfap2—transcription factor activating enhancer binding protein 2; Brca1/2—breast cancer susceptibility gene 1/2; Smo—smoothened, frizzled class receptor; Fgfr3—fibroblast growth factor receptor 3; Rar—retinoic acid receptor; Ror2—receptor tyrosine kinase like orphan receptor 2; Cbfb—core binding factor beta; Recql4—RecQ like helicase 4; Wls—wntless WNT ligand secretion mediator; Gα—G protein alpha; Efnb1—ephrin B1; Atg5—autophagy related protein 5; Fip200—focal adhesion kinase family interacting protein of 200 000; Tbx1—T-box protein 1; CATSHL syndrome—camptodactyly, tall stature, and hearing loss syndrome. ...