上海交通大学学报(医学版), 2024, 44(6): 694-701 doi: 10.3969/j.issn.1674-8115.2024.06.004

牙颌面畸形专题

先天缺牙相关EDAR基因突变报道及携带双突变位点的HED家系分析

兰嵘,, 代庆刚, 喻康, 卞晓玲, 叶丽娟, 吴轶群, 王凤,

上海交通大学医学院附属第九人民医院口腔第二门诊部,上海交通大学口腔医学院,国家口腔医学中心,国家口腔疾病临床医学研究中心,上海市口腔医学重点实验室,上海市口腔医学研究所,上海 201999

Congenital tooth agenesis-related EDAR variants and pedigree analysis of HED patients with two variants

LAN Rong,, DAI Qinggang, YU Kang, BIAN Xiaoling, YE Lijuan, WU Yiqun, WANG Feng,

Department of 2nd Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 201999, China

通讯作者: 王 凤,电子信箱:diana_wangfeng@aliyun.com

编委: 张慧俊

收稿日期: 2024-02-08   接受日期: 2024-03-19   网络出版日期: 2024-06-28

基金资助: 国家自然科学基金.  82271004
上海市自然科学基金.  21ZR1437700
上海交通大学医学院附属第九人民医院生物样本库项目.  YBKB202101
上海交通大学医学院附属第九人民医院研究型医师.  2022yxyjxys-wf
上海交通大学医学院附属第九人民医院“交叉”研究基金项目.  JYJC202305

Corresponding authors: WANG Feng, E-mail:diana_wangfeng@aliyun.com.

Received: 2024-02-08   Accepted: 2024-03-19   Online: 2024-06-28

作者简介 About authors

兰 嵘(1998—),女,硕士生;电子信箱:lanrongcq@163.com。 E-mail:lanrongcq@163.com

摘要

目的·探索先天缺牙相关的外异蛋白A受体(ectodysplasin A receptor,EDAR)基因突变位点,初步分析EDAR基因突变导致综合征型和非综合征型缺牙的原因。方法·研究对象为就诊于上海交通大学医学院附属第九人民医院口腔第二门诊部的先天缺牙患者及其家系成员,提取其外周血中的基因组DNA进行全外显子组测序。通过初步筛选后,用PolyPhen-2、Mutation Taster、Provean对潜在突变位点的有害性进行预测,对分析后的突变位点进行Sanger测序验证。进行突变位点的保守性分析,使用在线工具Swiss-Model进行同源建模,分析EDAR蛋白的三维结构变化。对患者及其家系成员的先天缺牙和全身发育情况进行临床检查。结果·在纳入的先天缺牙患者中共发现5名EDAR基因突变患者,1名患者携带移码突变c.368_369insC(p.L123fs),4名患者携带错义突变。在EDAR错义突变患者中,有2名患有非综合征型缺牙(non-syndromic tooth agenesis,NSTA),分别携带c.77C>A(p.A26E)纯合突变和c.380C>T(p.P127L)杂合突变。另外2名患有少汗型外胚层发育不良(hypohidrotic ectodermal dysplasia,HED),均带有2个基因突变位点:1名为EDAR复合杂合患者,携带来自父亲的EDAR c.77C>T(p.A26V)和来自母亲的EDAR c.1281G>C(p.L427F);另1名为EDAR、外异蛋白A(ectodysplasin A,EDA)双基因突变患者,EDAR c.1138A>C(p.S380R)和EDA c.1013C>T(p.T338M)均来自母亲,这2个位点在此前的报道中仅与NSTA相关。EDAR c.1281G>C(p.L427F)、c.77C>A(p.A26E)为未被报道过的错义突变新位点。错义突变可能通过改变氨基酸残基极性、电荷或体积等,对蛋白空间构象造成影响;移码突变造成了非3整倍数的碱基增加,可能导致蛋白的截短或降解。结论·发现了2个新的EDAR错义突变位点,报道了由EDAR纯合突变导致的NSTA以及由EDAEDAR双基因突变导致HED的病例,扩展了对于EDAR突变造成HED和NSTA的致病机制的理解。

关键词: 外胚层发育不良 ; 家族性缺牙 ; 外异蛋白A受体 ; 外异蛋白A ; 全外显子组测序

Abstract

Objective ·To explore EDAR (ectodysplasin A receptor) gene variants that lead to congenital tooth agenesis, and preliminarily analyze the reasons why variants in EDAR can cause both syndromic and non-syndromic tooth agenesis. Methods ·Patients with congenital tooth agenesis admitted to the Department of 2nd Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine and their family members were included, and genomic DNA from their peripheral blood was extracted for whole exome sequencing (WES). After preliminary screening, PolyPhen-2, Mutation Taster, and Provean were used to predict the harmfulness of potential variants. The screened variants in patients and their families were verified by Sanger sequencing. Conservation analysis of variants was performed, and Swiss-Model was used to analyze the changes in the three-dimensional structure of EDAR. The teeth and syndromic phenotype of the patients and their family members were investigated. Results ·Among the included congenital tooth agenesis patients, five patients with EDAR mutations were found, one with EDAR frameshift mutation c.368_369insC(p.L123fs) and the other four with EDAR missense mutations. Two of these four patients were diagnosed as non-syndromic tooth agenesis (NSTA), resulted from c.77C>A(p.A26E) homozygous mutation and c.380C>T(p.P127L) heterozygous mutation, respectively. The other two patients with two variants were diagnosed as hypohidrotic ectodermal dysplasia (HED). One compound heterozygous missense mutation patient carried EDAR c.77C>T(p.A26V) from her father and EDAR c.1281G>C (p.L427F) from her mother; the other patient with both EDAR and EDA mutations carried EDAR c.1138A>C(p.S380R) heterozygous mutation and EDA c.1013C>T(p.T338M) hemizygous mutation. Both variants were from his mother and were reported to be related with NSTA. Two of these missense mutations, EDAR c.1281G>C(p.L427F) and EDAR c.77C>A (p.A26E), had not been reported before. The missense mutations affected the protein's spatial conformation by altering the polarity, charge, or volume of the amino acid residues. The frameshift mutation caused a non-triplet base addition, which probably led to protein truncation or degradation. Conclusion ·Two new EDAR missense mutations are discovered. An NSTA patients with EDAR homozygous mutations and an HED patient with both EDA and EDAR mutations are reported. It expands the understanding of pathogenic mechanisms of EDAR mutations causing HED and NSTA.

Keywords: ectodermal dysplasia ; familial tooth agenesis ; ectodysplasin A receptor ; ectodysplasin A ; whole exome sequencing

PDF (3577KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

兰嵘, 代庆刚, 喻康, 卞晓玲, 叶丽娟, 吴轶群, 王凤. 先天缺牙相关EDAR基因突变报道及携带双突变位点的HED家系分析. 上海交通大学学报(医学版)[J], 2024, 44(6): 694-701 doi:10.3969/j.issn.1674-8115.2024.06.004

LAN Rong, DAI Qinggang, YU Kang, BIAN Xiaoling, YE Lijuan, WU Yiqun, WANG Feng. Congenital tooth agenesis-related EDAR variants and pedigree analysis of HED patients with two variants. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2024, 44(6): 694-701 doi:10.3969/j.issn.1674-8115.2024.06.004

先天缺牙是由于牙胚发育障碍,造成牙齿数目减少的常见颅颌面先天发育缺陷。它在不同人群中的发病率可达1.6%~6.9%(除第三磨牙外),其发病与遗传、环境、进化等多种因素有关,遗传因素在家族性先天缺牙中起主导作用1。在发育过程中,牙齿的形态和数量由外异蛋白A(ectodysplasin A,EDA)、无翅型MMTV整合位点家族(wingless-type MMTV integration site family,WNT)、音猬因子(sonic hedgehog,SHH)共同调控2。除了影响牙齿外,这些通路也与皮肤、指甲等其他外胚层器官的发育有关。因此,以上通路的异常还可以导致少汗型外胚层发育不良(hypohidrotic ectodermal dysplasia,HED),HED患者具有毛发稀少、少汗、先天缺牙、特殊面容(鞍状鼻、眼周色素沉着、前额突出)等症状2-3

外异蛋白A受体(ectodysplasin A receptor,EDAR)作为EDA的受体,发挥着关键的信号传递作用。EDAR基因位于2号染色体q11~q13,包含12个外显子。此前有研究4发现,除EDA突变致病外,有1/4的HED病例都是由EDAR突变所致。EDAR基因的第2、3、4外显子编码与EDA结合的胞外配体结合域(ligand binding domain,LBD);第12外显子编码胞内死亡结构域(death domain,DD),该区域募集EDARADD进而激活下游的核因子κB(nuclear factor κB,NF-κB),介导外胚层来源组织器官的生长发育3。这2个区域也是突变最高发的区域,突变可能导致EDAR蛋白构象发生改变,影响蛋白稳定性,使其与EDA或EDARADD的亲和力下降5

病因的多样性导致了临床表现的多样性,EDA/EDAR通路上同一基因的突变既可以导致非综合征型缺牙(non-syndromic tooth agenesis,NSTA),也可以导致综合征型缺牙(syndromic tooth agenesis,STA)5-7,但造成患者病情差异的原因尚不可知。因此,本研究拟对EDAR突变患者的基因型和表型进行分析,来探究突变位点的致病性以及突变的剂量效应对于临床症状的影响。

1 对象与方法

1.1 研究对象

本研究纳入的对象为就诊于上海交通大学医学院附属第九人民医院口腔第二门诊部的先天缺牙患者及其家系成员。通过询问病史和家族遗传史,结合口内和影像学检查,确认患者缺少恒牙和/或恒牙牙胚(除第三磨牙外),全身检查患者是否存在系统性发育障碍。

1.2 全外显子测序

采集先天缺牙先证者及直系亲属外周血,使用全基因组DNA提取试剂盒[天根生化科技(北京)有限公司]从血液样本中提取总基因组DNA。全外显子测序由上海亿康医学检验所有限公司或上海第九人民医院分子诊断中心进行。标准流程包括制备DNA片段、文库构建、杂交捕获、文库扩增和纯化等。经过质量控制程序后,使用Illumina平台(Illumina,美国)进行测序。

1.3 突变位点筛选

使用基因组分析工具(Genome Analysis Toolkit,Broad Institute,美国)比对人类基因组参考序列GRCh38/hg38与全外显子测序结果。对结果进行如下筛选:①删除在千人基因组数据(1000g_all)、gnomAD数据(gnomAD_ALL和gnomAD_EAS)、ESP6500数据库(esp6500si_all)这4个频率数据库中频率>1%的突变。②保留外显子和剪切区域的突变。③删除不会改变氨基酸的同义突变。④识别单核苷酸多态性位点和插入/删除位置,去除小型(小于10个碱基对)的非移码插入/删除突变。

1.4 突变位点有害性及致病性分析

分别使用Polyphen-2(http://genetics.bwh.harvard.edu/pph2/)、Mutation Taster(https://www.mutationtaster.org/)和Provean(http://provean.jcvi.org/index.php)在线平台对突变位点的有害性进行评估。

Polyphen-2的预测结果分为很可能有害(probably damaging,分值为0.909~1)、可能有害(possibly damaging,分值为0.446~0.908)、无害(benign,分值为0~0.445)。Mutation Taster的预测结果分为致病(disease causing)、已知致病(disease causing automatic)、多态性(polymorphism)、已知多态性(polymorphism automatic)。Provean的预测结果分为有害(deleterious,分值为-14~<-2.5)、中性(neutral,分值为-2.5~14)。

根据美国医学遗传学和基因组学学院(American College of Medical Genetics and Genomics,ACMG)的指南,突变被分类为致病性(pathogenic)、可能致病性(likely pathogenic)、不确定意义(uncertain significance)、可能良性(likely benign)、良性(benign)。

1.5 突变位点保守性分析及蛋白结构预测

通过NCBI(National Center of Biotechnology Information)数据库(https://www.ncbi.nlm.nih.gov/)获得不同物种的EDAR蛋白序列,包括人(>NP_071731.1)、小鼠(>NP_034230.1)、斑马鱼(>NP_001108536.2)、牛(>XP_005212787.1)、褐家鼠(>NP_001178828.1)、恒河猴(>XP_014968589.2)、黑猩猩(>XP_024210387.1)这7种脊椎动物的EDAR氨基酸序列,使用T-Coffee软件(https://www.ebi.ac.uk/Tools/msa/tcoffee/)进行了跨物种的保守性分析。

使用Swiss-Model在线工具选择与目标序列一致度≥30%的已知结构作为模板,采用同源建模的方式,分析EDAR蛋白结构域突变前后的三维结构。

1.6 聚合酶链式反应及Sanger测序

EDAR参考序列为NM_022336.4,EDA参考序列为NM_001399.5。在筛选后的突变位点前后设计引物。采用Sanger测序技术,对患者及其直系亲属进行验证。

2 结果

2.1 突变位点检测及有害性分析

本研究纳入5名无血缘关系的先天缺牙患者,其中3位为HED患者,2位为NSTA患者(表1)。对突变位点进行分析,5名患者携带1个EDAR移码突变、5个EDAR错义突变和1个EDA错义突变。HED患者包括1位纯合移码突变患者和1位复合杂合错义突变患者和1位EDA、EDAR双基因错义突变患者。而NSTA患者包括1位杂合错义突变和1位纯合错义突变。本研究发现了2种未被报道过的EDAR错义突变新位点:c.1281G>C(p.L427F),c.77C>A(p.A26E)。

表1   5名先天缺牙患者 EDAREDA 突变位点致病性预测

Tab 1  Pathogenicity prediction of EDAR and EDA mutations in five patients

IDGeneGenderAge/yearPheno-type

Nucleotide

change (amino acid change)

Zygosity

Mutation

type

ACMG criteriaPolyphen⁃2 (score)Mutation tasterProvean (score)Novel or reported
1EDARFemale31HED

c.368_369insC

(p.L123fs)

HomFrameshiftLP(PVS1, PM2, PP1)NADisease causingNAYU, et al.[8]
2EDARFemale9HED

c.77C>T

(p.A26V)

cHetMissenseLP(PS1, PM2, PP3)PD (0.99)Polymor-phismNeutral (-1.399)PLAISANCIÉ, et al.[9]
EDARFemale9HED

c.1281G>C

(p.L427F)

cHetMissenseLP(PM1, PM2, PP3, PM3)PD (1.00)Disease causingNeutral (-1.061)Novel
3EDARMale9HED

c.1138A>C

(p.S380R)

HetMissenseVUS(PM3, BP3, BP5)PD (1.00)Polymor-phismNeutral (-0.948)

ZHANG,

et al.[10]

EDAMale9HED

c.1013C>T

(p.T338M)

HemiMissenseP(PS3, PM1, PM2, PP1, PP3)PD (1.00)Disease causingNeutral (-2.145)LI, et al.[11]
4EDARMale16NSTA

c.380C>T

(p.P127L)

HetMissenseVUS(PM2, PP1, PP3)PD (0.99)Disease causingNeutral (-0.335)YU, et al.[8]
5EDARMale19NSTA

c.77C>A

(p.A26E)

HomMissenseVUS(PM2, PM3, PM5)PD (0.99)Polymor-phismNeutral (-1.271)Novel

Note: Hom—homozygous; Hemi—hemizygous; Het—heterozygous; cHet—compound heterozygous; P—pathogenic; LP—likely pathogenic; VUS—uncertain significance; NA—not available; PD—probably damaging.

新窗口打开| 下载CSV


针对突变位点使用进行Polyphen-2、Mutation Taster、Provean进行预测,检出的错义突变位点的Polyphen-2预测结果均为很可能有害,Mutation Taster预测结果为致病或多态性,Provean预测结果均为中性。

2.2 突变位点物种保守性分析及蛋白三维结构预测

本研究纳入的突变位点均位于EDAR主要功能区:LBD和DD。EDAR突变位点的进化保守序列分析显示位于LBD的c.77C>T(p.A26V)、c.77C>A(p.A26E)和c.380C>T(p.P127L),以及位于DD的c.1138A>C(p.S380R)、c.1281G>C(p.L427F),在人、小鼠、斑马鱼、骆驼、褐家鼠、恒河猴、黑猩猩中高度保守(图1A、B)。

图1

图1   EDAR 突变的保守性分析及突变蛋白质结构预测

Note: A. Schematic diagram of wild-type EDAR protein and the localization of identified EDAR variants (red squares indicate variants found in NSTA patients, and yellow ones represent those in HED patients). B. Conservation analysis of affected amino acids among seven vertebrate species. C. Three-dimensional structure of wild-type EDAR and five missense variants (p.A26E, p.A26V, p.P127L, p.S380R, and p.L427F). E—exon; TM—transmembrane domain; Wt—wild-type.

Fig 1   Conservation analysis of EDAR variants and the structure prediction of mutant proteins


在Swiss-Model在线工具中选择序列匹配度最高的Q9R187.1.A模板进行EDAR蛋白的三维结构重建,野生型蛋白序列匹配度为91.52%,突变型匹配度为91.29%,GMQE(global model quality estimate)值为0.67。通过蛋白结构三维重建(图1C)可以看到,c.77C>T(p.A26V)、c.77C>A(p.A26E)分别将第26位氨基酸由非极性不带电荷的丙氨酸变为了侧链体积更大的缬氨酸和极性带负电的谷氨酸;c.380C>T(p.P127L)突变使得具有环状侧链结构的脯氨酸变成了支链氨基酸亮氨酸,影响其卷曲构象;c.1138A>C(p.S380R)导致侧链体积较小的丝氨酸突变为了体积较大并且带正电的精氨酸,可能对此处的α-螺旋结构造成影响;c.1281G>C(p.L427F)位点附近也存在α-螺旋结构,该突变使得亮氨酸变成了侧链体积较大且带有苯环的苯丙氨酸。

2.3 患者临床表型及家系分析

本研究纳入5个EDAR突变导致恒牙先天缺失的患者,其中3位HED患者平均缺牙(25.7±3.3)颗,2位NSTA患者平均缺牙数目为(10.5±3.5)颗(图2)。纳入的5例患者最常见的缺牙位点为上颌第一前磨牙,缺失率为100%(10/10),其次为下颌第一前磨牙、上下颌第二前磨牙、下颌中切牙,缺失率均为80%(8/10);缺失率最低的为上颌第二磨牙、下颌第一磨牙,为40%(4/10)。其中,2位NSTA患者均缺失的牙位为上下颌第二前磨牙和上颌第一前磨牙。

图2

图2   EDAR 突变的先天缺牙患者恒牙和/或恒牙牙胚缺失情况

Note:A. #1 HED patient with all the teeth and/or germs missing. B. #2 HED patient with all the teeth and/or germs missing. C. #3 HED patient with 21 teeth and/or germs missing, and 6 deciduous teeth retained. D. #4 NSTA patient with 7 teeth and/or germs missing, and 5 deciduous teeth retained. E. #5 NSTA patient with 14 teeth missing.

Fig 2   Permanent teeth and/or permanent teeth germs missing in congenital tooth agenesis patients with EDAR variants


HED患者具有毛发稀疏、少汗、多牙缺失、特殊面容等特征。本研究对其中2位携带双突变位点的HED患者进行Sanger测序及家系调查(#2、#3)。#2先证者的突变类型为复合杂合,EDAR c.77C>T(p.A26V)遗传自父亲,EDAR c.1281G>C(p.L427F) 遗传自母亲,双亲均未见缺牙(图3A)。#3先证者带有EDAR c.1138A>C(p.S380R)杂合突变和EDA c.1013C>T(p.T338M)半合子突变,这2个突变都遗传自母亲。母亲无缺牙和全身表型,但其母亲的表兄患病(图3B)。

图3

图3   2位携带双突变位点的HED患者家系分析及Sanger测序结果

Note: A. #2 proband carried compound heterozygous missense mutation, EDAR c.77C>T(p.A26V) from her father and EDAR c.1281G>C(p.L427F) from her mother; B. #3 proband carried EDAR c.1138A>C(p.S380R) heterozygous mutation and EDA c.1013C>T(p.T338M) hemizygous mutation, both from his mother. Squares indicate males, and circles indicate females. Filled squares/circles represent individuals with tooth agenesis, and empty ones represent unaffected subjects. Red knots mean that variants were verified by Sanger sequencing.

Fig 3   Pedigree analysis and Sanger sequencing of two HED patients with two variants


3 讨论

张刘陶等12人在2021年对所有先天缺牙相关的EDAR突变进行了总结,发现HED和NSTA相关的EDAR突变最好发的区域位于DD,占比分别为40%和50%;其次位于LBD,占比分别为31%和19%。本研究纳入的3位HED患者携带的EDAR突变也位于LBD和DD,2位NSTA患者携带的EDAR突变均位于LBD。

EDAR最常见的突变类型为错义突变,错义突变造成的病理影响与发生突变的位点以及突变后的氨基酸类型有关。通过结构建模分析和分子动力学模拟可知,EDAR错义突变导致蛋白功能异常的潜在原因可能是:①蛋白表面电荷分布发生变化,氢键数量和结合强度下降。②蛋白骨架改变引起的构象发生变化,使得EDAR蛋白稳定性降低。③EDAR与EDA或EDARADD的亲和力减弱5。本研究报道了5个EDAR错义突变:c.77C>T(p.A26V)的氨基酸侧链体积发生了变化;c.380C>T(p.P127L)的侧链结构由环状变为了链状,c.1281G>C(p.L427F)的变化与之相反;c.1138A>C(p.S380R)和c.77C>A(p.A26E)的体积和带电性均发生了改变,这些氨基酸的变化可能对蛋白空间构象造成影响。

本研究纳入的另一种突变类型为移码突变:1位HED患者携带纯合EDAR c.368_369insC(p.L123fs),这造成了非3整倍数的碱基增加。该类型突变可能造成更大影响,它可以导致mRNA的开放阅读框中出现提前终止密码子,随后被识别及降解,以避免截短蛋白的出现13。此外,携带EDAR无义突变的杂合子也可以产生NSTA,可能使得EDAR蛋白翻译提前终止,丧失整个跨膜区和胞内段14

不同基因突变造成的缺牙模式各不相同,但EDAEDAR编码的蛋白位于同一信号通路,它们突变引起缺牙的位点较为相似:主要累及上下颌侧切牙和前磨牙区,EDA突变被认为与下颌中切牙缺失更为相关,而磨牙区在EDAEDAR突变中都较少受累615。本研究纳入的EDAR突变导致的缺牙最多见于上颌第一前磨牙(10/10),最少累及上颌第二磨牙、下颌第一磨牙(4/10)。其中,2位NSTA患者均缺失上下颌第二前磨牙和上颌第一前磨牙。此外,EDAR基因对于缺牙数目的影响也具有特异性,ZHANG等10和CHEN等16认为EDAR的单核苷酸多态性和基因突变可能与多牙缺牙(缺失6颗及以上)有关。此前研究的统计结果显示EDAR突变导致的NSTA平均出现10颗左右的牙齿缺失,而HED伴随的缺牙情况会更为严重615。这与本研究统计结果类似:2位NSTA患者平均缺牙(10.5±3.5)颗,3位HED患者平均缺牙(25.7±3.3)颗。

目前,在人类基因突变数据库(Human Gene Mutation Database,HGMD;http://www.hgmd.cf.ac.uk/)中能检索到大约70种与HED相关的EDAR突变,近年来报道的与NSTA相关的EDAR突变有近20种81217-18EDAR突变造成不同疾病表型的原因尚不明确,但越来越多的学者认为NSTA和HED属于同种疾病不同严重程度的表现形式5

疾病表型之间的差异可能是因为EDA/EDAR/NF-κB通路对器官发育的激活具有组织特异性。CASAL等19用重组EDA-A1治疗患有X连锁HED的狗,小剂量重组EDA-A1即可明显改善毛发、出汗水平、支气管纤毛运动情况,但只有在使用大剂量重组EDA-A1进行治疗的时候,缺牙情况才会好转。EDA/EDAR/NF-κB通路的激活对于牙齿发育的影响呈现出一定的剂量效应,突变的有害性和突变接合性(杂合/纯合/半合子)都会影响缺牙情况。本团队此前的研究20结果表明:当突变造成EDA与EDAR之间的相互结合被完全阻碍的时候会导致HED的发生,而部分削弱它们的结合会造成NSTA。EDAR c.1258C>T(p.R420W)杂合突变被认为与NSTA发病有关,但也有学者报道该位点的纯合突变可以导致HED的发生13。本研究的结果也支持上述观点:复合杂合患者(#2先证者)携带分别来自父亲和母亲的EDAR c.77C>T(p.A26V)和EDAR c.1281G>C(p.L427F)突变,她的双亲并未出现缺牙,但先证者具有全口牙列缺失和HED的临床表现。此前也有报道认为EDAR复合杂合患者可能比杂合亲代出现更严重的表型21,这也提示了EDAR突变致病存在剂量依赖性。

#3先证者携带来自其母亲的EDAR c.1138A>C(p.S380R)杂合突变和EDA c.1013C>T(p.T338M)半合子突变,其临床表现为多牙缺失、少汗、少毛,但其母亲并无症状。以往报道认为EDAR c.1138A>C(p.S380R)杂合突变可能与NSTA相关10EDA c.1013C>T(p.T338M)也与NSTA有关,并且因其位于X染色体,患者通常为男性11。这种2个突变不单独致病但发生在同一个体就会引发疾病的现象,在遗传学中被称为“合成致死”(synthetic lethality),用于解释2个不同基因的突变具有协同致病效应22-23。这是首次在EDA通路中发现2个基因的突变会加重患者临床症状。此前研究24报道了WNT通路中Wnt蛋白10A(Wnt family member 10A,WNT10A)和低密度脂蛋白受体6(low-density lipoprotein receptor-related protein 6,LRP6)基因突变也会协同产生更严重的缺牙表型。这也说明,NSTA和HED很可能是严重程度不同的同种疾病。

ZHANG等10认为EDAR纯合突变通常导致HED,而NSTA一般由EDAR杂合突变引起。本研究发现了第1例由EDAR纯合突变导致的NSTA:#5先证者携带EDAR新发突变c.77C>A(p.A26E),缺失14颗恒牙,但未见其他外胚层表型。他的双亲都携带该位点的杂合突变,只有父亲出现先天缺牙。在同一个家族中,即使是携带相同基因型的不同个体也会有不同的缺牙表型25,这提示牙发育还可能与基因的表观遗传调控相关26,但目前暂未见EDA/EDAR/NF-κB通路基因的表观遗传调控影响牙发育的相关报道,故而对于EDAR突变相关NSTA和HED的致病机制和遗传方式的认识并不完善,还需要进一步研究。此外,全外显子测序、潜在突变位点的有害性分析和突变蛋白的模型预测仅能为基因突变的致病性提供参考,但突变造成的真实影响需要检测细胞功能和动物表型来进行验证。

作者贡献声明

吴轶群、王凤参与选题与课题指导;兰嵘、王凤参与论文撰写及修改;兰嵘、代庆刚、喻康、卞晓玲参与数据整理;代庆刚、叶丽娟参与病例收集。所有作者均阅读并同意最终稿件的提交。

AUTHOR's CONTRIBUTIONS

The study was designed and supervised by WANG Feng and WU Yiqun. The manuscript was drafted and revised by LAN Rong and WANG Feng. The data were collated by LAN Rong, DAI Qinggang, YU Kang and BIAN Xiaoling. The clinical cases were collected by DAI Qinggang and YE Lijuan. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

All authors have no conflict of interest relevant to this study.

参考文献

AL-ANI A H, ANTOUN J S, THOMSON W M, et al. Hypodontia: an update on its etiology, classification, and clinical management[J]. Biomed Res Int, 2017, 2017: 9378325.

[本文引用: 1]

LAN R, WU Y Q, DAI Q G, et al. Gene mutations and chromosomal abnormalities in syndromes with tooth agenesis[J]. Oral Dis, 2023, 29(6): 2401-2408.

[本文引用: 2]

TRZECIAK W H, KOCZOROWSKI R. Molecular basis of hypohidrotic ectodermal dysplasia: an update[J]. J Appl Genet, 2016, 57(1): 51-61.

[本文引用: 2]

CHASSAING N, BOURTHOUMIEU S, COSSEE M, et al. Mutations in EDAR account for one-quarter of non-ED1-related hypohidrotic ectodermal dysplasia[J]. Hum Mutat, 2006, 27(3): 255-259.

[本文引用: 1]

GAO Y Z, JIANG X H, WEI Z, et al. The EDA/EDAR/NF-κB pathway in non-syndromic tooth agenesis: a genetic perspective[J]. Front Genet, 2023, 14: 1168538.

[本文引用: 4]

ZHOU M Q, ZHANG H, CAMHI H, et al. Analyses of oligodontia phenotypes and genetic etiologies[J]. Int J Oral Sci, 2021, 13(1): 32.

[本文引用: 2]

PARVEEN A, KHAN S A, MIRZA M U, et al. Deleterious variants in WNT10A, EDAR, and EDA causing isolated and syndromic tooth agenesis: a structural perspective from molecular dynamics simulations[J]. Int J Mol Sci, 2019, 20(21): 5282.

[本文引用: 1]

YU K, DOU J Q, HUANG W, et al. Expanding the genetic spectrum of tooth agenesis using whole-exome sequencing[J]. Clin Genet, 2022, 102(6): 503-516.

[本文引用: 3]

PLAISANCIÉ J, BAILLEUL-FORESTIER I, GASTON V, et al. Mutations in WNT10A are frequently involved in oligodontia associated with minor signs of ectodermal dysplasia[J]. Am J Med Genet A, 2013, 161A(4): 671-678.

[本文引用: 1]

ZHANG L T, YU M, WONG S W, et al. Comparative analysis of rare EDAR mutations and tooth agenesis pattern in EDAR- and EDA-associated nonsyndromic oligodontia[J]. Hum Mutat, 2020, 41(11): 1957-1966.

[本文引用: 4]

LI S F, LI J H, CHENG J, et al. Non-syndromic tooth agenesis in two Chinese families associated with novel missense mutations in the TNF domain of EDA (ectodysplasin A)[J]. PLoS One, 2008, 3(6): e2396.

[本文引用: 2]

张刘陶. EDAR基因突变导致的非综合征型先天缺牙的易感牙位和功能研究[D]. 北京: 北京大学, 2021.

[本文引用: 2]

ZHANG L T. Functional study and susceptible tooth position of non-syndromic tooth agenesis caused by EDAR mutations[D]. Beijing: Peking University, 2021.

[本文引用: 2]

WOHLFART S, SCHNEIDER H. Variants of the ectodysplasin A1 receptor gene underlying homozygous cases of autosomal recessive hypohidrotic ectodermal dysplasia[J]. Clin Genet, 2019, 95(3): 427-432.

[本文引用: 2]

ZENG B H, ZHAO Q, LI S J, et al. Novel EDA or EDAR mutations identified in patients with X-linked hypohidrotic ectodermal dysplasia or non-syndromic tooth agenesis[J]. Genes, 2017, 8(10): 259.

[本文引用: 1]

FOURNIER B P, BRUNEAU M H, TOUPENAY S, et al. Patterns of dental agenesis highlight the nature of the causative mutated genes[J]. J Dent Res, 2018, 97(12): 1306-1316.

[本文引用: 2]

CHEN Y T, LIU H C, HAN D, et al. Association between EDAR polymorphisms and non-syndromic tooth agenesis in the Chinese Han population[J]. Chin J Dent Res, 2017, 20(3): 153-159.

[本文引用: 1]

张红玉, 杨丽媛, 孟令强, 等. 全外显子测序检测非综合征型多数牙先天缺失家系中EDAR基因新突变的研究[J]. 实用口腔医学杂志, 2021, 7(6): 783-789.

[本文引用: 1]

ZHANG H Y, YANG L Y, MENG L Q, et al. A novel EDAR mutation identified in nonsyndromic oligodontia patients by whole exome sequencing[J]. Journal of Practical Stomatology, 2021, 7(6): 783-789.

[本文引用: 1]

柳星宇, 朱俊霞, 赵玉鸣. 少汗性外胚层发育不良患者全外显子组测序分析[J]. 中华口腔医学杂志, 2022, 57(2): 154-160.

[本文引用: 1]

LIU X Y, ZHU J X, ZHAO Y M. Whole exome sequencing and analysis of hypohidrotic ectodermal dysplasia patients[J]. Chinese Journal of Stomatology, 2022, 57(2): 154-160.

[本文引用: 1]

CASAL M L, LEWIS J R, MAULDIN E A, et al. Significant correction of disease after postnatal administration of recombinant ectodysplasin A in canine X-linked ectodermal dysplasia[J]. Am J Hum Genet, 2007, 81(5): 1050-1056.

[本文引用: 1]

YU K, HUANG C H, WAN F T, et al. Structural insights into pathogenic mechanism of hypohidrotic ectodermal dysplasia caused by ectodysplasin A variants[J]. Nat Commun, 2023, 14(1): 767.

[本文引用: 1]

VAN DER HOUT A H, OUDESLUIJS G G, VENEMA A, et al. Mutation screening of the ectodysplasin-A receptor gene EDAR in hypohidrotic ectodermal dysplasia[J]. Eur J Hum Genet, 2008, 16(6): 673-679.

[本文引用: 1]

PÉREZ-PÉREZ J M, CANDELA H, MICOL J L. Understanding synergy in genetic interactions[J]. Trends Genet, 2009, 25(8): 368-376.

[本文引用: 1]

DELTAS C. Digenic inheritance and genetic modifiers[J]. Clin Genet, 2018, 93(3): 429-438.

[本文引用: 1]

CHU K Y, WANG Y L, CHOU Y R, et al. Synergistic mutations of LRP6 and WNT10A in familial tooth agenesis[J]. J Pers Med, 2021, 11(11): 1217.

[本文引用: 1]

HAN Y, WANG X L, ZHENG L Y, et al. Pathogenic EDA mutations in Chinese Han families with hypohidrotic ectodermal dysplasia and genotype-phenotype: a correlation analysis[J]. Front Genet, 2020, 11: 21.

[本文引用: 1]

LIN Y, ZHENG L W, FAN L, et al. The epigenetic regulation in tooth development and regeneration[J]. Curr Stem Cell Res Ther, 2018, 13(1): 4-15.

[本文引用: 1]

/