上海交通大学学报(医学版), 2024, 44(8): 981-990 doi: 10.3969/j.issn.1674-8115.2024.08.007

论著 · 基础研究

高脂饮食对孕期小鼠脂肪组织构成和炎症特征的影响

卢星宇,1, 徐一丹1, 刘亦沁1, 张骞仁2, 董艳,1,3

1.上海交通大学医学院附属新华医院内分泌科,上海 200092

2.上海交通大学医学院附属新华医院消化科,上海 200092

3.上海市儿科医学研究所,上海 200092

Effect of high-fat diet on adipose tissues structure and inflammatory characteristics during pregnancy in mice

LU Xingyu,1, XU Yidan1, LIU Yiqin1, ZHANG Qianren2, DONG Yan,1,3

1.Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China

2.Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China

3.Shanghai Institute of Pediatrics, Shanghai 200092, China

通讯作者: 董 艳,电子信箱:dongyansh@sjtu.edu.cn

编委: 吴洋

收稿日期: 2024-03-12   接受日期: 2024-04-07  

基金资助: 国家重点研发计划.  2018YFC1004604
上海市科学技术委员会科研基金资助项目.  18ZR1431100

Corresponding authors: DONG Yan, E-mail:dongyansh@sjtu.edu.cn.

Received: 2024-03-12   Accepted: 2024-04-07  

作者简介 About authors

卢星宇(1998—),女,硕士生;电子信箱:luxingyu0912@163.com。 E-mail:luxingyu0912@163.com

摘要

目的·探究高脂饮食后雌鼠孕前、孕期脂肪组织的改变及其对子代脂肪组织可能产生的影响。方法·C57BL/6J雌性小鼠随机接受普通饮食(CON组,n=12)和高脂饮食(HFD组,n=12)5周;根据是否妊娠再分为普通饮食非妊娠组(CON-UN组)、普通饮食妊娠组(CON-P组)和高脂饮食非妊娠组(HFD-UN组)、高脂饮食妊娠组(HFD-P组)。雌鼠在孕期和哺乳期均维持原有饮食。雌鼠分别于喂饲5周或孕18.5 d取其白色脂肪组织(内脏)和棕色脂肪组织(肩胛)。两组孕鼠的子代断乳后,分别接受普通饮食至第11周,取子代脂肪组织。采用苏木精-伊红(H-E)染色观察脂肪细胞的变化;流式细胞术检测白色脂肪组织中CD4+T细胞、CD8+T细胞、总T细胞、CD4+T细胞/CD8+T细胞比值及NK细胞的比例;实时荧光定量聚合酶链反应(RT-PCR)检测白色脂肪组织IL-6IL-1β mRNA的表达。结果·高脂饮食喂养5周后,HFD组雌鼠体质量高于CON组雌鼠(P<0.05)。高脂饮食后,育龄期雌鼠和妊娠末期雌鼠的白色脂肪和棕色脂肪的质量均显著增加(均P<0.05)。 HFD-UN组和HFD-P组雌鼠白色脂肪组织中同一视野下细胞数量明显减少,脂肪细胞大小不一,脂滴占比增大,细胞体积显著增大;HFD-UN组和HFD-P组脂滴面积占视野总面积的比例分别与CON-UN组和CON-P组比较,差异均有统计学意义(均P<0.05)。HFD-UN组和HFD-P组棕色脂肪细胞则呈现出相对混乱的排列,脂肪细胞大小不一,但细胞体积无明显改变。HFD-UN组和HFD-P组脂肪组织中CD8+T细胞比例和总T细胞比例升高,炎症因子IL-6IL-1β mRNA表达水平升高;分别与CON-UN组和CON-P组比较,差异均具有统计学意义(均P<0.05)。育龄期雌鼠(HFD-UN组)脂肪组织中NK细胞比例降低,但在妊娠期(HFD-P组)NK细胞比例则明显升高,两者呈现相反趋势。HFD组子代断乳后恢复普通饮食,其体质量、白色脂肪和棕色脂肪质量仍显著高于CON组子代(均P<0.05),且白色脂肪细胞体积显著增大。结论·高脂饮食可引起育龄期和妊娠期雌鼠脂肪细胞结构、免疫细胞比例改变及炎症水平升高,并影响子代脂肪组织结构;脂肪组织可能是介导肥胖代际传递的新载体。

关键词: 高脂饮食 ; 脂肪组织 ; 妊娠 ; 母子代际传递

Abstract

Objective ·To investigate the changes of adipose tissues in mice after high-fat diet before and during pregnancy and the potential effects on adipose tissues in their offspring. Methods ·C57BL/6J female mice were randomly assigned to the normal diet (CON group, n=12) or the high-fat diet (HFD group, n=12) for 5 weeks. The two groups were further subdivided according to pregnancy: a normal diet non-pregnancy group (CON-UN group), a normal diet pregnancy group (CON-P group), a high-fat diet non-pregnancy group (HFD-UN group), and a high-fat diet pregnancy group (HFD-P group). The original diet was maintained during pregnancy and lactation. White adipose tissues (WAT) and brown adipose tissues (BAT) were collected from visceral and scapula of mice after 5 weeks of feeding or E18.5d. Offspring from both dietary groups were placed on a normal diet after weaning, and their adipose tissues were collected at the 11th week. H-E staining was used to observe the changes of adipocytes. Flow cytometry was employed to detect the proportions of CD4+T cells, CD8+T cells, total T cells, CD4+T/CD8+T and NK cells in WAT. RT-PCR was used to assess the expression of IL-6 and IL-1β mRNA in WAT. Results ·After 5 weeks on a high-fat diet, the body weight of female mice in the HFD group was higher than that in the CON group (P<0.05). Both WAT and BAT weights were markedly increased in the HFD groups before and during pregnancy (both P<0.05). In the WAT from HFD-UN and HFD-P groups, the number of cells within the same visual field decreased, the size of adipose cells varied, the proportion of fat droplets increased and the cell volume expanded. The proportion of lipid drop area to total visual field in the HFD-UN group and HFD-P group was compared with the CON-UN group and CON-P group, respectively, and the difference was statistically significant (all P<0.05). BAT in the HFD-UN and HFD-P groups showed a relatively chaotic arrangement and varying adipocyte sizes, although cell volume remained unchanged. The proportions of CD8+T cells and total T cells in adipose tissues were elevated in the HFD-UN and HFD-P groups, accompanied by increased mRNA levels of IL-6 and IL-1β, respectively, compared with the CON-UN and CON-P groups, and the differences were statistically significant (all P<0.05). NK cells proportions decreased at reproductive age (HFD-UN group) but increased significantly during pregnancy (HFD-P group), showing a divergent trend. Despite a return to a normal diet after weaning, offspring from the high-fat diet group had significantly higher weight of body, WAT and BAT, compared to those of normal diet (all P<0.05), and the volume of WAT was significantly enlarged. Conclusion ·A high-fat diet can induce the changes of adipocyte structure and immune cell ratio, and elevate inflammation levels in adipose tissues before and during pregnancy, which also impacts the adipose structure in offspring. Adipose tissue may be a new vector mediating the intergenerational transmission of obesity.

Keywords: high-fat diet ; adipose tissue ; pregnancy ; intergenerational transmission

PDF (4045KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

卢星宇, 徐一丹, 刘亦沁, 张骞仁, 董艳. 高脂饮食对孕期小鼠脂肪组织构成和炎症特征的影响. 上海交通大学学报(医学版)[J], 2024, 44(8): 981-990 doi:10.3969/j.issn.1674-8115.2024.08.007

LU Xingyu, XU Yidan, LIU Yiqin, ZHANG Qianren, DONG Yan. Effect of high-fat diet on adipose tissues structure and inflammatory characteristics during pregnancy in mice. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2024, 44(8): 981-990 doi:10.3969/j.issn.1674-8115.2024.08.007

近年来,随着高能量的食物摄入,超重和肥胖的患病率迅速上升1。肥胖是多种疾病的潜在诱因,包括2型糖尿病、脂肪肝以及生殖功能不全等2-3。育龄期和妊娠期妇女的肥胖不仅会导致妊娠合并症发生率升高,还会引起一系列不良妊娠结局,影响母体和胎儿的生命和健康4-5。肥胖作为一种长期存在的慢性低度炎症,其主要特征是脂肪组织的异常堆积。鉴于肥胖的高患病率,以及肥胖妇女的子代成年后代谢性疾病发生风险增大,深入研究高脂饮食对小鼠脂肪组织结构和功能的影响具有重要意义。

哺乳动物脂肪组织分为两大类:白色脂肪组织和棕色脂肪组织6。白色脂肪是哺乳动物体内最丰富的脂肪组织,以三酰甘油的形式将能量存储在单分子脂滴中,并分泌大量调节新陈代谢和胰岛素抵抗的激素和细胞因子,既是储能器官又是内分泌器官7。棕色脂肪组织含有丰富的线粒体,通过氧化磷酸化将储存的脂质转化为热量,参与维持体温的关键环节8-9。在哺乳动物中,白色脂肪负责储存能量,而棕色脂肪负责释放能量6。正常情况下,健康的脂肪组织能够高效地进行能量的储存和释放,在控制体内整体能量稳态中发挥重要作用10-11

目前,多项研究12-13均发现肥胖母亲的子代更容易患非酒精性脂肪肝等代谢性疾病。然而,这种代际遗传的具体机制尚且不清楚。为深入描述这种代际遗传的影响及可能机制,本研究以小鼠为研究对象,聚焦于高脂饮食后雌鼠孕前、孕期脂肪组织的改变及其可能对子代脂肪组织产生的影响。这一研究旨在揭示高脂饮食对育龄期和妊娠期女性代谢健康的潜在危害,并进一步探讨这种影响是否能够传递到子代的脂肪组织中,以期为未来制定更为精准的孕期肥胖干预策略提供科学支持。

1 材料与方法

1.1 实验动物及分组处理

3周龄SPF级C57BL/6J雌性小鼠及交配用的同品系9周龄雄鼠均购自吉辉公司。雌鼠体质量(13.32±0.87)g,雄鼠体质量(25.32±1.08)g。实验动物生产许可证号为SCXK(沪)2017-0012,使用许可证号为SYXK(沪)2018-0038。将动物饲养于上海交通大学医学院附属新华医院SPF级动物房;饲料分为普通饲料(含16.7%脂肪、64.0%碳水化合物和19.3%蛋白质;LAD3001G,中国)和高脂饲料(含60.0%脂肪、20.6%碳水化合物和19.4%蛋白质;TP23300,中国);所有动物均自由进食和饮水。

所有雌鼠先适应性喂养1周后随机分为2组,分别接受普通饲料(CON组,n=12)和高脂饲料(HFD组,n=12)喂养5周。每组随机选取6只交配,根据是否妊娠分为:普通饮食非妊娠组(CON-UN组,n=6)、普通饮食妊娠组(CON-P组,n=6)和高脂饮食非妊娠组(HFD-UN组,n=6)、高脂饮食妊娠组(HFD-P组,n=6)。CON-P组和HFD-P组与同龄同品系雄鼠进行交配,所有孕鼠在孕期和哺乳期均维持原有饮食。实验期间每周记录母鼠体质量及喂食量。雌鼠于高脂饮食喂饲5周或孕18.5 d,采用2.5%戊巴比妥钠麻醉后,取白色脂肪组织(内脏)和棕色脂肪组织(肩胛)进行后续实验。分别饲养普通饮食子代和高脂饮食子代到11周,取子代的脂肪组织。子代于3周断奶前由母鼠喂养,断乳后均接受普通饮食。

1.2 主要仪器与试剂

脱氧核糖核酸酶Ⅰ(BS137)和胶原酶Ⅳ(BS165)购自北京兰杰柯科技有限公司;红细胞裂解液(C3702)购自上海碧云天生物技术有限公司;RNA快速提取试剂盒购自上海奕杉生物公司;3 mm研磨珠购自武汉塞维尔生物科技有限公司。PCR引物包括IL-6(F:TAGTCCTTCCTACCCCAATTTCC;R:TTGGTCCTTAGCCACTCCTTC)和IL-1β(F:GCAACTGTTCCTGAACTCAACT;R:ATCTTTTG GGGTCCGTCAACT),购自上海生工生物工程技术有限公司;Hieff qPCR SYBR Green Master Mix购自上海翊圣生物科技有限公司;percoll分离液(40501ES60)购自上海翌圣生物有限公司;APC-CY7标记的CD45抗体(103116)购自美国Biolegend公司;FITC标记的CD3抗体(553061)、BV786标记的CD4抗体(563331)、BV650标记的NK1.1抗体(564143)和BV510标记的fixable viability stain抗体(564406)购自美国BD公司。

主要仪器包括酶标仪(美国Thermo Fisher Scientific公司)、实时荧光定量聚合酶链反应(RT-PCR)仪(美国Thermo Fisher Scientific公司)、流式细胞仪(BD LSR Fortessea,美国BD公司)。

1.3 实验方法

1.3.1 苏木精-伊红染色(H-E染色)观察脂肪细胞

分别收集育龄期雌鼠、妊娠期雌鼠和子代的白色脂肪组织和棕色脂肪组织,清洗干净后用4%多聚甲醛固定。脱水后进行透明化,浸蜡包埋,将包埋好的蜡块切成5~8 μm的薄片,烘干后脱脂染色。最后,经过脱水和透明化进行封片,封胶后置于显微镜下观察。用imageJ软件计算脂滴面积占视野总面积的比例。

1.3.2 RT-PCR检测IL-6IL-1β mRNA的表达

切取适量的白色脂肪组织至离心管中,加入研磨珠用匀浆机匀浆,利用RNA快速提取试剂盒提取组织RNA。使用Nanodrop分光光度计测定洗脱的RNA浓度。根据测得的RNA浓度,进行反转录,反应得到的cDNA产物用于RT-PCR检测。实验以Gapdh为内参,通过2-∆∆CT计算mRNA的相对表达量。

1.3.3 单细胞悬液制作

分离雌鼠腹部白色脂肪组织,磷酸缓冲液(PBS)冲洗干净,剪碎置于15 mL离心管;加入5 mL含有1.5 mg/mL Ⅱ型胶原酶的完全培养基,于37 ℃摇床孵育50 min,过70 μm滤膜后制备单细胞悬液;离心后加入1 mL红细胞裂解液裂解红细胞或加入4 mL 38%的percoll 500 g,离心20 min,去除杂质后再加入红细胞裂解液;洗净后使用2%胎牛血清(FBS)/PBS重悬细胞。

1.3.4 流式细胞术分析T细胞和NK细胞比例

将制作好的单细胞悬液浓度调整至1×107个/mL,加入表面抗体混合物50 μL/个(抗体体积参照说明书推荐稀释度加入);4 ℃避光孵育40 min后,用PBS洗去未结合抗体;加入200 μL的2% FBS/PBS重悬后,转入5 mL流式管中;流式细胞仪上机收集细胞,采用 FlowJo-V10软件进行数据分析。

1.4 统计学分析

采用Graphpad软件(9.5.1)进行数据分析。连续型变量以x¯±s表示。统计分析前进行方差齐性检验,采用t检验或Welch校正后的t检验进行统计分析。P<0.05表示差异具有统计学意义。

2 结果

2.1 高脂饮食后雌鼠体质量和脂肪质量变化

经过高脂饮食喂养5周后,虽然HFD组雌鼠的周摄食量低于CON组雌鼠(图1A),但其体质量高于CON组雌鼠(均P<0.05);至第9周时,两组体质量分别为(19.84±0.34)g和(18.22±0.50)g,差异仍具有统计学意义(P=0.000)(图1B)。雌鼠被随机分为CON-UN组、CON-P组、HFD-UN组、HFD-P组,所有组保持原有饮食喂养;结果显示,高脂饮食后,育龄期雌鼠和妊娠末期雌鼠的白色脂肪(图1C)和棕色脂肪(图1D)的质量均显著增加(均P<0.05)。

图1

图1   雌鼠高脂饮食后摄食量、体质量、脂肪组织质量的改变

Note: A/B. Weekly food intake (A) and body weight (B) of female mice before mating. C/D. The weight of white adipose tissues (C) and brown adipose tissues (D) in different groups. P=0.013; P=0.014; P=0.000; P=0.002; P=0.012; P=0.017.

Fig 1   Changes of food intake, body weight, and adipose tissues weight in female mice after high-fat diet


2.2 雌鼠高脂饮食后脂肪组织结构变化

雌鼠脂肪组织H-E染色结果显示,普通饮食组(CON-UN组和CON-P组)的白色脂肪组织细胞排列紧密,形态较规整,脂滴分布均匀且大小基本一致(图2A、B)。高脂饮食组(HFD-UN组和HFD-P组)的白色脂肪组织在同一视野下显示出细胞数量减少,脂肪细胞大小不一,脂滴占比增大,细胞体积增大(图2A、B)。HFD-UN组和HFD-P组脂滴面积占视野总面积的比例分别与CON-UN组和CON-P组比较,差异均有统计学意义(均P<0.05),见图2A、B。

图2

图2   高脂饮食后育龄期和妊娠末期雌鼠白色脂肪组织和棕色脂肪组织结构变化

Note: A/B. The structure of white adipose tissues and the proportion of cell area to total area in mice at reproductive age (A) and at the end of pregnancy (B). C/D. The structure of brown adipose tissues and the proportion of cell area to total area in mice at reproductive age (C) and at the end of pregnancy (D). P=0.002; P=0.000.

Fig 2   Structure of white adipose tissues and brown adipose tissues after high-fat diet in female mice at reproductive age and at the end of pregnancy


普通饮食组中,棕色脂肪细胞体积较小,大小基本一致,排列整齐有序,细胞内含有许多小脂滴;高脂饮食组的棕色脂肪细胞则呈现出相对混乱的排列,细胞大小不一,但细胞体积没有明显改变(图2C、D)。

2.3 高脂饮食雌鼠中脂肪组织内T细胞比例变化

对母鼠的白色脂肪组织进行了T细胞数量的分析,结果显示,与CON-UN组相比,HFD-UN组的CD4+T细胞、CD8+T细胞、总T细胞比例及CD4+T细胞/CD8+T细胞比值均明显增加,且差异具有统计学意义(均P<0.05),见图3A~E。与CON-P组相比,HFD-P组的CD8+T细胞和总T细胞比例均明显增加,差异具有统计学意义(均P<0.05);CD4+T细胞比例有增加的趋势,CD4+T细胞/CD8+T细胞比值没有明显改变(图3F~J)。

图3

图3   高脂饮食后育龄期和妊娠末期雌鼠脂肪组织中T细胞比例变化

Note: A. Scatter diagram of T cells in the adipose tissues of female mice at reproductive age. B‒E. The proportion of CD4+T cells (B), CD8+T cells (C), T cells (D) and CD4+T cells/CD8+T cells (E) in adipose tissues of female mice at reproductive age. F.Scatter diagram of T cells in the adipose tissues of female mice at the end of pregnancy. G‒J. The proportion of CD4+T cells (G), CD8+T cells (H), T cells (I) and CD4+T cells/CD8+T cells (J) in adipose tissues of female mice at the end of pregnancy. P=0.000; P=0.030; P=0.005; P=0.019; P=0.021; P=0.033.

Fig 3   Changes of T cell proportion in adipose tissues of female mice at reproductive age and at the end of pregnancy after high-fat diet


2.4 高脂饮食雌鼠脂肪组织中NK细胞比例变化

进一步分析脂肪组织中NK细胞的比例,结果显示HFD-UN组中NK细胞比例明显低于CON-UN组,且差异具有统计学意义(P<0.05),见图4A、B。在妊娠雌鼠中,HFD-P组脂肪细胞中NK细胞比例则明显高于CON-P组,且差异具有统计学意义(P<0.05),见图4C、D。

图4

图4   高脂饮食后育龄期和妊娠末期雌鼠脂肪组织中NK细胞比例变化

Note: A/B. Scatter diagram (A) and the proportion (B) of NK cells in the adipose tissues of female mice at reproductive age. C/D. Scatter diagram (C) and the proportion (D) of NK cells in the adipose tissues of female mice at the end of pregnancy. P=0.006; P=0.022.

Fig 4   Changes of NK cell proportion in adipose tissues of female mice at reproductive age and at the end of pregnancy after high-fat diet


2.5 高脂饮食雌鼠脂肪组织中炎症因子表达变化

脂肪组织内炎症因子的RT-PCR结果显示,与CON组相比,HFD组脂肪组织内IL-6IL-1β mRNA表达均明显增加,且差异具有统计学意义(均P<0.05),见图5A、B。与CON-P组比较,HFD-P组中IL-6IL-1β mRNA的表达同样显著增加(均P<0.05),见图5C、D。

图5

图5   高脂饮食后育龄期和妊娠末期雌鼠脂肪组织中炎症因子表达变化

Note: A/B. The mRNA expression levels of IL-6 (A) and IL-1β (B) in the adipose tissues of female mice at reproductive age. C/D. The mRNA expression levels of IL-6 (C) and IL-1β (D) in the adipose tissues of female mice at the end of pregnancy. P=0.019; P=0.048; P=0.018; P=0.033.

Fig 5   Expression of inflammatory factors after high-fat diet in adipose tissues of female mice at reproductive age and at the end of pregnancy


2.6 母鼠高脂饮食对子代脂肪组织结构的影响

HFD组子鼠在断乳后予以普通饮食至11周时,其体质量仍明显高于CON组子鼠(图6A)。同时,棕色脂肪组织和白色脂肪组织的质量均显著增加(图6B、C)。脂肪组织H-E染色结果显示,与CON组相比,HFD组子鼠白色脂肪组织脂滴占比增大,脂肪细胞体积明显增大(图6D)。两组子鼠棕色脂肪细胞内均含有许多小脂滴,细胞较小,体积无明显差异(图6E)。

图6

图6   母鼠高脂饮食后子代体质量、脂肪组织质量及脂肪组织结构的变化

Note: A. The body weight of offspring. B/C.The weight of brown adipose tissues (B) and white adipose tissues (C) of offspring. D. The structure of white adipose tissues and the proportion of cell area to total area in offspring. E. The structure of brown adipose tissues and the proportion of cell area to total area in offspring. P=0.012; P=0.030; P=0.026; P=0.035.

Fig 6   Changes of body weight, adipose tissues weight and adipose tissues structure in offspring from high-fat diet mice


3 讨论

世界卫生组织统计数据显示,至2022年,全球约有25亿人深受超重/肥胖的困扰14。肥胖是目前社会面临的健康挑战之一,已被认为是非传染性疾病的“流行病”15。育龄期和妊娠期妇女肥胖不仅影响自身的代谢水平,而且对子代的长期健康会产生一定影响。因此,关注育龄期和妊娠期妇女的肥胖,显得尤为重要4。在肥胖患者中,脂肪占总体质量的50%以上,且脂肪组织的炎症被认为是其发病的关键因素16。因此,本研究主要关注高脂饮食后雌鼠孕前和孕末期脂肪组织的变化,及其可能对子代脂肪组织产生的潜在影响。这一研究将有助于更全面地理解高脂饮食在不同时间点对脂肪组织结构和功能的影响,为孕期饮食和生活方式的改善提供科学依据,同时为代际遗传的研究提供线索。

本研究通过H-E染色观察高脂饮食后雌鼠脂肪组织结构的改变,结果显示,育龄期和妊娠期雌鼠的脂肪组织结构发生了相似改变。具体而言,白色脂肪细胞大小不一,脂滴占比明显增大;而棕色脂肪细胞则表现出相对混乱的排列。与此同时,高脂饮食导致育龄期和妊娠期母鼠脂肪组织中IL-6和IL-1β表达均显著增加。过度的炎症可导致细胞应激,促进组织损伤17。此外,慢性炎症还可影响细胞外基质重塑过程,从而进一步加剧炎症,影响组织的结构和功能18。因此,我们推测高脂饮食时育龄期雌鼠出现高炎症水平状态,并成为其脂肪组织结构紊乱的原因之一。这种异常状态在孕期可持续存在,进而影响孕鼠的代谢状态。

肥胖期间,随着脂肪细胞的增大,脂肪组织中免疫细胞成为体内促炎介质的主要来源19。本研究发现高脂饮食后,育龄期和妊娠期雌鼠脂肪组织中CD8+T细胞均明显增加。研究20-21发现,CD8+T细胞不仅有助于脂肪组织中巨噬细胞的招募,而且可以通过分泌IFN-γ来激活M1型巨噬细胞,从而加剧脂肪组织炎症,并成为肥胖期间外周炎症因子的重要来源。将CD8+T细胞转移到缺乏CD8+T的小鼠中,会加重高脂饮食引起的脂肪组织炎症22。与之相一致,本研究结果显示,高脂饮食后,育龄期和妊娠期雌鼠的脂肪组织中炎症因子水平均显著上升。这一结果进一步提示,高脂饮食后雌鼠脂肪组织中CD8+T细胞的增加,与其炎症水平升高密切相关。这可能是引起全身慢性低度炎症的主要原因。

正常情况下,健康的脂肪组织能够高效地进行能量的储存和释放,在控制体内整体能量稳态中发挥重要作用10-11。然而,在高脂饮食条件下,孕期雌鼠的白色脂肪和棕色脂肪质量都显著增加,且白色脂肪细胞脂滴占比增大,体积显著增大;棕色脂肪细胞大小不一,排列紊乱。这提示高脂饮食可能导致孕鼠脂肪细胞在能量储存和释放方面失去平衡。本研究还发现,即使高脂饮食子代在断乳后恢复正常饮食,其体质量、白色脂肪和棕色脂肪的质量仍显著高于正常饮食子代。此外,在HFD组子代的白色脂肪组织中,脂肪细胞的体积也明显增大。因此,高脂饮食可能引起孕鼠脂肪组织结构改变,进而影响孕期对营养的需求和利用,并通过调节能量代谢影响到后代脂肪组织的敏感性。

高脂饮食对脂肪组织中NK细胞的影响,在育龄期和妊娠期表现出不同的趋势。在育龄期,高脂饮食后雌鼠脂肪组织中NK细胞明显减少,但至妊娠期NK细胞则明显增加。有研究23-24报道,妊娠期间子宫外的NK细胞可以迁移到母胎界面,是母胎界面NK细胞的重要来源。因此,妊娠期高脂饮食后脂肪组织NK细胞的增加,可能与NK细胞在妊娠期间被募集有关。NK细胞进入子宫内,可能激活并招募更多的炎症免疫细胞,形成宫内炎症环境25。根据健康与疾病的发育起源理论学说,这种不良的宫内环境也会增加其子代成年后患肥胖的风险26。这与本研究结果中观察到的高脂饮食子代体质量、白色脂肪和棕色脂肪质量显著增加相一致。

综上所述,高脂饮食可导致育龄期和妊娠期雌鼠脂肪组织的结构和功能发生变化,包括脂肪细胞结构变化、免疫细胞比例改变及炎症程度增加。孕鼠脂肪组织的变化可能通过调节能量代谢、激活炎症反应等对后代脂肪组织的结构产生潜在影响。

作者贡献声明

董艳负责研究设计和指导;卢星宇负责撰写文章;卢星宇和徐一丹参与了实验操作;刘亦沁和张骞仁为实验提供了技术支持。所有作者均阅读并同意了最终稿件的提交。

AUTHOR's CONTRIBUTIONS

DONG Yan designed the project and directed the research. LU Xingyu drafted the manuscript. LU Xingyu and XU Yidan conducted the experiment. LIU Yiqin and ZHANG Qianren provided technical support for the experiments. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

All authors disclose no relevant conflict of interests.

参考文献

BLÜHER M. Obesity: global epidemiology and pathogenesis[J]. Nat Rev Endocrinol, 2019, 15: 288-298.

[本文引用: 1]

BLÜHER M. Metabolically healthy obesity[J]. Endocr Rev, 2020, 41(3): bnaa004.

[本文引用: 1]

MARQUARD K L, STEPHENS S M, JUNGHEIM E S, et al. Polycystic ovary syndrome and maternal obesity affect oocyte size in in vitro fertilization/intracytoplasmic sperm injection cycles[J]. Fertil Steril, 2011, 95(6): 2146-9, 2149.e1.

[本文引用: 1]

CHEN C, XU X, YAN Y, et al. Estimated global overweight and obesity burden in pregnant women based on panel data model[J]. PLoS One, 2018, 13(8): e0202183.

[本文引用: 2]

GOLDSTEIN R F, ABELL S K, RANASINHA S, et al. Association of gestational weight gain with maternal and infant outcomes: a systematic review and meta-analysis[J]. JAMA, 2017, 317(21): 2207-2225.

[本文引用: 1]

CHENG L, WANG J, DAI H, et al. Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus[J]. Adipocyte, 2021, 10(1): 48-65.

[本文引用: 2]

ROSEN E D, SPIEGELMAN B M. What we talk about when we talk about fat[J]. Cell, 2014, 156(1/2): 20-44.

[本文引用: 1]

MONTANARI T, POŠĆIĆ N, COLITTI M. Factors involved in white-to-brown adipose tissue conversion and in thermogenesis: a review[J]. Obes Rev, 2017, 18(5): 495-513.

[本文引用: 1]

WANG Q A, TAO C, GUPTA R K, et al. Tracking adipogenesis during white adipose tissue development, expansion and regeneration[J]. Nat Med, 2013, 19: 1338-1344.

[本文引用: 1]

LEE J H, PARK A, OH K J, et al. The role of adipose tissue mitochondria: regulation of mitochondrial function for the treatment of metabolic diseases[J]. Int J Mol Sci, 2019, 20(19): E4924.

[本文引用: 2]

VISHVANATH L, GUPTA R K. Contribution of adipogenesis to healthy adipose tissue expansion in obesity[J]. J Clin Invest, 2019, 129(10): 4022-4031.

[本文引用: 2]

HAGSTRÖM H, SIMON T G, ROELSTRAETE B, et al. Maternal obesity increases the risk and severity of NAFLD in offspring[J]. J Hepatol, 2021, 75(5): 1042-1048.

[本文引用: 1]

CAO B, LIU C, ZHANG Q, et al. Maternal high-fat diet leads to non-alcoholic fatty liver disease through upregulating hepatic SCD1 expression in neonate rats[J]. Front Nutr, 2020, 7: 581723.

[本文引用: 1]

World Health Organization. Obesity and overweight[EB/OL]. [2024-03-01]. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

[本文引用: 1]

GREEN M, ARORA K, PRAKASH S. Microbial medicine: prebiotic and probiotic functional foods to target obesity and metabolic syndrome[J]. Int J Mol Sci, 2020, 21(8): E2890.

[本文引用: 1]

ROHM T V, MEIER D T, OLEFSKY J M, et al. Inflammation in obesity, diabetes, and related disorders[J]. Immunity, 2022, 55(1): 31-55.

[本文引用: 1]

MEDZHITOV R. The spectrum of inflammatory responses[J]. Science, 2021, 374(6571): 1070-1075.

[本文引用: 1]

SUTHERLAND T E, DYER D P, ALLEN J E. The extracellular matrix and the immune system: a mutually dependent relationship[J]. Science, 2023, 379(6633): eabp8964.

[本文引用: 1]

GREENBERG A S, OBIN M S. Obesity and the role of adipose tissue in inflammation and metabolism[J]. Am J Clin Nutr, 2006, 83(2): 461S-465S.

[本文引用: 1]

NISHIMURA S, MANABE I, NAGASAKI M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity[J]. Nat Med, 2009, 15: 914-920.

[本文引用: 1]

STRISSEL K J, DEFURIA J, SHAUL M E, et al. T-cell recruitment and Th1 polarization in adipose tissue during diet-induced obesity in C57BL/6 mice[J]. Obesity (Silver Spring), 2010, 18(10): 1918-1925.

[本文引用: 1]

POPOV Y, SCHUPPAN D. CD8+ T cells drive adipose tissue inflammation: a novel clue for NASH pathogenesis?[J]. J Hepatol, 2010, 52(1): 130-132.

[本文引用: 1]

TAO Y, LI Y H, ZHANG D, et al. Decidual CXCR4+ CD56bright NK cells as a novel NK subset in maternal-foetal immune tolerance to alleviate early pregnancy failure[J]. Clin Transl Med, 2021, 11(10): e540.

[本文引用: 1]

WU X, JIN L P, YUAN M M, et al. Human first-trimester trophoblast cells recruit CD56brightCD16- NK cells into decidua by way of expressing and secreting of CXCL12/stromal cell-derived factor 1[J]. J Immunol, 2005, 175(1): 61-68.

[本文引用: 1]

HAUGSTØYL M E, CORNILLET M, STRAND K, et al. Phenotypic diversity of human adipose tissue-resident NK cells in obesity[J]. Front Immunol, 2023, 14: 1130370.

[本文引用: 1]

BARKER D J. The origins of the developmental origins theory[J]. J Intern Med, 2007, 261(5): 412-417.

[本文引用: 1]

/