上海交通大学学报(医学版), 2025, 45(4): 487-492 doi: 10.3969/j.issn.1674-8115.2025.04.011

综述

纳米材料通过降低活性氧水平促进骨组织再生的研究进展

鲁佳艺1,2,*, 刘锦喆1,2,*, 郭尚春1,3,4, 陶诗聪,1,3

1.上海交通大学医学院附属第六人民医院临床医学院,上海 200233

2.上海交通大学医学院,上海 200025

3.上海交通大学医学院附属第六人民医院骨科,上海 200233

4.上海市四肢显微外科研究所,上海 200233

Advances in nanomaterials for promoting bone tissue regeneration by reducing reactive oxygen species levels

LU Jiayi1,2,*, LIU Jinzhe1,2,*, GUO Shangchun1,3,4, TAO Shicong,1,3

1.Clinical Medical College of Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China

2.Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

3.Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China

4.Shanghai Institute of Microsurgery on Extremities, Shanghai 200233, China

通讯作者: 陶诗聪,副研究员,主治医师,博士;电子信箱:sctao@shsmu.edu.cn

第一联系人: 鲁佳艺、刘锦喆为共同第一作者

编委: 吴洋

收稿日期: 2024-10-10   接受日期: 2024-12-10   网络出版日期: 2025-04-21

基金资助: 国家自然科学基金.  81802226.  81871834.  82072530.  82372566.  82472595
上海市浦江人才计划.  2019PJD038
2020年上海市“医苑新星”青年医学人才培养资助计划
上海交通大学医学院“双百人”项目.  2022-017
上海市第六人民医院优秀人才培育项目.  ynyq202101

Corresponding authors: TAO Shicong, E-mail:sctao@shsmu.edu.cn.

Received: 2024-10-10   Accepted: 2024-12-10   Online: 2025-04-21

作者简介 About authors

鲁佳艺(2002—),女,本科生;电子信箱:lujiayi1101@sjtu.edu.cn

刘锦喆(2003—),男,本科生;电子信箱:2287630083@qq.com。 。

摘要

活性氧(reactive oxygen species,ROS)是骨组织受损伤后常见的产物。如果ROS不能被及时清除,可在细胞内引发氧化应激,从而对骨组织的再生产生负面影响。近年来,随着研究的深入,能够降低ROS水平的纳米材料在促进骨组织再生方面的作用日益凸显。目前用于降低ROS水平的纳米材料,主要包括经表面修饰和微结构设计的纳米材料、掺杂改性无机材料的纳米材料、功能化聚合物材料及水凝胶、纳米酶材料。但这些纳米材料在临床应用时仍然存在一定局限性,主要原因是其可能具有细胞毒性,且缺乏足够的临床试验数据。该文对利用纳米材料降低ROS水平以促进骨再生的研究进行总结,为未来设计和开发促进骨组织再生的新型纳米材料提供思路。

关键词: 纳米材料 ; 活性氧 ; 骨再生 ; 抗氧化

Abstract

Reactive oxygen species (ROS) are common products of bone tissue injury. If ROS cannot be removed in time, oxidative stress will be induced in the cells, which will have a negative effect on the regeneration of bone tissue. In recent years, with the deepening of research, nanomaterials capable of reducing ROS levels have shown increasing potential in promoting bone tissue regeneration. Currently, nanomaterials applied to reduce ROS levels mainly include those with surface modifications and microstructural designs, dopant-modified inorganic materials, functionalized polymeric materials and hydrogels, and nano-enzymatic materials. However, the clinical application of these nanomaterials is still limited due to their potential cytotoxicity and the lack of sufficient clinical trials. This literature review summarises the research on the use of nanomaterials to reduce ROS levels to promote bone regeneration and provides ideas for the future design and development of novel nanomaterials in this field.

Keywords: nanomaterials ; reactive oxygen species ; bone regeneration ; antioxidant

PDF (1330KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

鲁佳艺, 刘锦喆, 郭尚春, 陶诗聪. 纳米材料通过降低活性氧水平促进骨组织再生的研究进展. 上海交通大学学报(医学版)[J], 2025, 45(4): 487-492 doi:10.3969/j.issn.1674-8115.2025.04.011

LU Jiayi, LIU Jinzhe, GUO Shangchun, TAO Shicong. Advances in nanomaterials for promoting bone tissue regeneration by reducing reactive oxygen species levels. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2025, 45(4): 487-492 doi:10.3969/j.issn.1674-8115.2025.04.011

骨缺损是临床治疗中的一大难题,如何有效促进骨组织再生一直是研究热点。促进骨组织再生的机制非常复杂,成骨细胞等多种组织细胞通过各种信号通路响应外界刺激并调节骨组织再生,如Wnt/β-连环蛋白、骨形态发生蛋白2、甲状旁腺激素信号通路1

活性氧(reactive oxygen species,ROS)包括与氧有关的自由基及非自由基,如羟基自由基(•OH)、超氧化物(•O2-)以及过氧化氢(H2O2)等2。大部分ROS产生在线粒体内3。在氧化还原反应过程中,一小部分电子从线粒体电子传递链脱离,与O2相互作用产生ROS4。ROS与骨组织再生关系密切,利用纳米材料降低ROS水平,是促进骨再生的一种方法。本文总结ROS对骨组织再生的影响,以及利用纳米材料降低ROS水平的原理和研究进展。

1 ROS与骨组织再生

当骨组织受到严重的损伤后,可导致ROS的异常产生和积累5。过量的ROS可使线粒体内蛋白质氧化,从而抑制线粒体内ATP的产生6,影响骨组织的再生和修复。

此外,ROS可使线粒体DNA(mitochondrial DNA,mtDNA)碎片化,mtDNA会转移到细胞质中7,也被称为“DNA泄漏”。细胞质中的mtDNA可作为环化鸟苷酸-腺苷酸合成酶(cyclic guanosine monophosphate-adenosine monophosphate synthetase,cGAS)的配体,启动干扰素刺激基因(stimulator of interferon gene,STING)信号通路,引起炎症因子的产生8。STING又可激活核因子κB(nuclear factor-κB,NF-κB),抑制成骨细胞的成骨作用,促进破骨细胞的骨吸收作用,在骨组织中介导炎症的产生9,最终延缓创伤后的骨愈合10

骨髓间充质干细胞(bone marrow stem cell,BMSC)在骨组织再生的过程中发挥关键作用11。骨再生依靠BMSC完成膜内成骨,形成原始骨痂,原始骨痂逐渐钙化使骨受损部位愈合12。细胞内过度积累的ROS可降低BMSC的成骨能力,并导致BMSC凋亡13。在衰老的BMSC中,抗氧化酶活性的下降和铁积累可升高细胞内外ROS的水平,诱导氧化应激,从而抑制BMSC的增殖和分化,恶化骨骼微环境,阻碍骨骼再生14

2 纳米材料的作用原理

2.1 无机纳米材料

金属及金属氧化物可通过活性中心模拟抗氧化酶活性,清除ROS15。常用的金属元素有铈(cerium,Ce)、锰(manganese,Mn)、钴(cobalt,Co)等。Ce的抗氧化能力来源于Ce4+和Ce3+氧化还原循环,纳米Ce和CeO2纳米颗粒(cerium oxide nanoparticle,CeO2-NP)具有出色的过氧化物酶模拟活性,可清除ROS16。CeO2-NP抗氧化的深层机制在于其可以激活抗凋亡、自噬的信号通路,如磷脂酰肌醇-3激酶(phosphatidylinositol 3-kinase,PI3K)-蛋白激酶B(protein kinase B,AKT)信号通路,降低NF-κB等的转录水平,从而对抗细胞中的氧化应激17。MnO2纳米片是一种纳米酶,可以将ROS转化为O2,其抗氧化能力来源于Mn元素的多价态变化18。Co3O4纳米颗粒可以清除自由基,并且在一定浓度范围内,其抗氧化能力随浓度上升而增强19

纳米SiO2具有良好的生物相容性,可以调节成骨相关基因表达,促进成骨分化和骨骼的生物矿化20,是常用的骨再生纳米材料之一。然而,纳米SiO2很少直接用于清除ROS和对抗氧化应激,需要先对其进行一定的修饰,如以硫醇基团(-SH)对介孔二氧化硅纳米颗粒进行功能化修饰,以增强其清除ROS的能力21

硒在骨骼形成和代谢中发挥着不可替代的作用,可以有效预防氧化应激对细胞的毒性损伤22。硒纳米颗粒可通过调节PI3K-AKT信号通路,保护小鼠胚胎成骨前体细胞(mouse embryo osteoblast precursor cell,MC3T3-E1)免受ROS的损伤,并影响MC3T3-E1的早期分化23

2.2 有机纳米材料

多酚纳米材料是由多酚类物质作为前体,与其他化学物质进行化学反应合成的纳米材料,同时具有多酚类物质的抗氧化能力和纳米材料优异的物理特性24。多酚类物质的抗氧化性源于其独特的结构。首先,多酚类物质芳香环上连接着羟基,羟基的数量和位置影响多酚类物质抗氧化能力的强弱,羟基增多可提高其抗氧化能力,而位于芳香环邻位和对位的羟基比间位和单羟基更容易被氧化25。其次,多酚类物质与ROS之间存在π-π相互作用,故可以模拟天然酶的催化氧化还原反应26。因此,多酚类物质能够通过酚与醌基转化清除ROS,或将ROS转变成稳定状态27

聚多巴胺(polydopamine,PDA)是受贻贝黏附蛋白启发而研制出的纳米材料,具有强黏附性、高生物相容性28、高耐腐蚀性、促进羟基磷灰石矿化、促进细胞黏附增殖及成骨分化、促进BMSC招募等良好特性。因此,PDA大多是作为表面涂层对生物材料进行改性29,从而促进骨再生。PDA优越的氧化还原能力来源于儿茶酚基团30,可以通过羟基脱质子化和电子转移反应消除ROS31,从而降低氧化应激水平,构建有利于骨组织再生的微环境。

3 纳米材料在ROS清除中的应用

3.1 表面修饰和微结构设计

纳米材料表面的特定微纳结构在清除ROS方面表现出显著优势。HUANG等32制备出苯胺四聚体(aniline tetramer,AT)和甘氨酸乙酯共取代的POPP(称为PATGP)后,将其与聚乳酸-羟基乙酸共聚物[poly (lactic-co-glycolic acid),PLGA]进行比较,发现基于PLGA/PATGP制备的核壳纳米纤维在ROS清除、促进骨形成以及诱导成骨分化等方面,效果均优于PLGA/PATGP共混物和PLGA纳米纤维。HANG等33通过两步酸蚀法,在钛表面先后构建了微米尺度微坑和紧密的小直径纳米孔,发现其能够调节巨噬细胞的极化平衡,使其由以促炎症的M1型为主导转变为以抗炎修复的M2型为主导。此外,这种表面结构还能下调黏附细胞中细胞色素P450酶1A2(cytochrome P450 1A1 enzyme,CYP1A2)的表达,减少线粒体ROS的产生,从而抑制氧化应激,进一步减轻炎症反应。

3.2 功能化有机材料和水凝胶

纳米材料负载药物和水凝胶对ROS具有良好的清除作用。LAO等34构建了一种负载二甲双胍的沸石咪唑酯框架(metformin-loaded zeolitic imidazolate frameworks,ZIF-8)。该改性水凝胶能够释放二甲双胍和锌离子(Zn2+),通过二者的协同作用抑制ROS炎症级联反应,并通过同时作用于ROS和炎症,进一步维持细胞器的稳态,阻止炎症反应的持续进展。HE等14将雷帕霉素负载到聚二硒化物上,合成聚乙二醇化的聚甘油癸二酸酯/聚γ-谷氨酸(PEGylated poly glycerol sebacate/poly γ-glutamic acid,PEGS-NH2/γ-PGA)水凝胶,其对局部衰老微环境表现出高度敏感的ROS响应能力。LIU等35制备了一种新型的Sr和EGCG基金属酚网络,并进行PDA修饰。这种材料相比原来的基于细胞外基质和羟基磷灰石纳米线的仿生支架具备更高的生物相容性,生物活性也大大提高,具有出色的清除自由基和ROS的能力。ZHOU等36的研究提出了一种基于电化学驱动的原位纳米组装的新型支架,该支架由沉积在钛基板上的聚吡咯-聚多巴胺-羟基磷灰石(polypyrrole-polydopamine-hydroxyapatite,PPY-PDA-HA)薄膜组成,表现出持续的抗氧化活性,能够在生理条件下消除ROS。YANG等37在钛表面引入了一种载有白藜芦醇的二氧化钛纳米管涂层,以此对抗ROS。这种创新的涂层可显著减少巨噬细胞系RAW 264.7和BMSCs中ROS的产生,从而减轻炎症。

3.3 掺杂改性无机材料

纳米材料中Se、Sr等金属成分可显著抑制ROS的产生。LI等38发现Se@SiO2纳米复合材料可以减少ROS的产生,保护BMSC,避免其受到H2O2诱导的成骨分化抑制。HUANG等39将硒纳米颗粒(selenium nanoparticle,SeNP)加入复合材料中,以控制氧化应激水平,促进骨再生。WU等40发现氨基功能化掺锶介孔生物活性玻璃支架可以通过上调cAMP/PKA通路,诱导下游蛋白的磷酸化,减少线粒体内mtROS的产生41,减轻骨质疏松机体中BMSC内的氧化应激,在促进成骨再生的同时对抗骨质疏松。HUANG等42研究发现,通过植入TiO2纳米管,可介导叉头盒转录因子1(forkhead box transcription factor 1,FoxO1)信号通路,上调超氧化物歧化酶的活性,从而清除ROS。LI等43通过将Mn引入β-磷酸三钙(β-tricalcium phosphate,β-TCP)中,制备生物陶瓷Mn-TCP,发现其能显著增强氧自由基和氮自由基的清除,表明Mn-TCP生物陶瓷具有潜在的抗氧化性能。

3.4 纳米酶材料

纳米酶在催化ROS分解方面表现出优异的性能。DENG等44通过3D冷冻打印技术,制备了一种由聚芳醚酮(polyaryletherketone,PAEK)和45S5生物活性玻璃(bioactive glass,BG)构成的分层多孔支架。这种支架能够与包含SS31修饰的二氧化锰-铁蛋白仿生纳米酶(MF@S纳米酶)的混合纳米酶组合。MF@S纳米酶能特异性靶向线粒体,增强线粒体功能,清除线粒体中积累的ROS,抑制mtROS产生,从而使衰老细胞恢复活力。SHU等45利用3D打印技术,开发了一种基于含钴氯磷灰石的生物陶瓷复合支架;其具有丰富的催化活性位点,可以清除ROS,并支持细胞增殖、黏附和分化。XIE等46研究显示,一种基于氧化钴(cobaltous oxide,CoO)支持的Ir人工纳米酶(CoO-Ir),得益于从Co到Ir位点的强电荷转移能力,其消除H2O2的效率超过了大多数人工酶。SHU等47通过3D打印的β-TCP支架,成功开发了具有广谱ROS清除能力的锌钴双金属有机框架(zinc-cobalt bimetallic organic framework,Zn/Co-MOF)功能化β-TCP(MOF-TCP)支架。得益于其催化活性位点和降解产物的协同作用,Zn/Co-MOF赋予支架优异的抗氧化和抗炎特性。TIAN等48通过在Co3O4纳米晶体(Mn-Co3O4)中的Mn原子取代,开发了一种电子调制的金属氧化物。Mn-Co3O4中的Co位点显示出Co2+/Co3+比例增大,其氧化还原性能发生了改善,从而增强了其内在和广谱的催化ROS清除的活性,超过了目前报道的大多数金属氧化物。DING等49将纳米粒子ZIF-90-Bi-CeO2掺入由醛基化透明质酸和明胶组成的席夫碱化学交联水凝胶中,CeO2NP赋予该复合系统双酶——过氧化氢酶和超氧化物歧化酶样催化活性,因此这种双功能水凝胶具有去除生物膜并调节ROS和炎症反应的能力,可用于促进骨整合。

4 总结

骨再生是医学研究热点,一直受到研究者和临床医师的广泛关注。ROS是一类活泼的含氧自由基,若不能及时清除,可在骨组织内诱导氧化应激,阻碍骨再生;在细胞内会损伤线粒体,破坏mtDNA,泄露到胞质的mtDNA作为cGAS的配体,通过cGAS-STING信号通路促进炎症因子的表达,引发炎症。纳米材料以其特殊的物理特征、化学组成和良好的生物相容性,应用于生物体内以降低ROS水平,促进骨再生,成为近年来的研究热点。

随着对纳米材料降低ROS水平的机制的深入研究,我们发现其在骨再生修复领域具有巨大的应用潜力。纳米材料的设计具有高度的灵活性,可以根据患者的个体化需求进行定制,可调整材料的降解速率、表面修饰的生物分子及其针对特定病理环境的响应性,有望为解决骨折、感染、骨肿瘤等造成的骨缺损提供更加有效和个性化的方案。

尽管相关研究逐渐深入,但纳米材料在临床应用上仍存在一定的局限性。因纳米材料具有一定的细胞毒性,限制了其在生物体内的应用。此外,大多数关于纳米材料降低ROS水平的研究仅限于细胞和动物实验,缺乏临床研究验证其抗ROS效果。纳米材料工程与临床医学、生物学等多学科交叉,将会推动纳米材料的生物安全性研究从细胞、动物实验层面逐渐发展至临床试验。在未来研究中,可结合纳米材料在机体内的药物代谢动力学,寻找合适的给药途径,探索纳米材料在促进骨组织再生的同时,是否会引起非靶组织的损害以及肝、肾、心脏等实质器官的迟发不良反应,是否具有遗传毒性和性别特异性毒性等。我们期待未来能够开展更多关于纳米材料的跨学科研究,以更加广阔的视角分析和解决骨组织再生的临床问题。

作者贡献声明

鲁佳艺、刘锦喆负责文献查阅和论文撰写;郭尚春负责论文写作指导;陶诗聪负责论文的修改及审核。所有作者均阅读并同意了最终稿件的提交。

AUTHOR's CONTRIBUTIONS

LU Jiayi and LIU Jinzhe were responsible for the literature review and paper writing. GUO Shangchun was responsible for the paper writing guidance. TAO Shicong was responsible for the revision and review of the paper. All the authors have read the last version of paper and agreed to the submission.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

All authors declare no relevant conflict of interests.

参考文献

YUDOH K, SUGISHITA Y, SUZUKI-TAKAHASHI Y. Bone development and regeneration 2.0[J]. Int J Mol Sci, 2023, 24(10): 8761.

[本文引用: 1]

SAHOO B M, BANIK B K, BORAH P, et al. Reactive oxygen species (ROS): key components in cancer therapies[J]. Anticancer Agents Med Chem, 2022, 22(2): 215-222.

[本文引用: 1]

BOTTJE W G. Oxidative metabolism and efficiency: the delicate balancing act of mitochondria[J]. Poult Sci, 2019, 98(10): 4223-4230.

[本文引用: 1]

ZHAO R Z, JIANG S, ZHANG L, et al. Mitochondrial electron transport chain, ROS generation and uncoupling (Review)[J]. Int J Mol Med, 2019, 44(1): 3-15.

[本文引用: 1]

LI Z M, ZHAO T F, DING J, et al. A reactive oxygen species-responsive hydrogel encapsulated with bone marrow derived stem cells promotes repair and regeneration of spinal cord injury[J]. Bioact Mater, 2023, 19: 550-568.

[本文引用: 1]

GUO Y, GUAN T, SHAFIQ K, et al. Mitochondrial dysfunction in aging[J]. Ageing Res Rev, 2023, 88: 101955.

[本文引用: 1]

SABNAM S, RIZWAN H, PAL S, et al. CEES-induced ROS accumulation regulates mitochondrial complications and inflammatory response in keratinocytes[J]. Chem Biol Interact, 2020, 321: 109031.

[本文引用: 1]

ZHOU L, ZHANG Y F, YANG F H, et al. Mitochondrial DNA leakage induces odontoblast inflammation via the cGAS-STING pathway[J]. Cell Commun Signal, 2021, 19(1): 58.

[本文引用: 1]

GAO Z, GAO Z, ZHANG H, et al. Targeting STING: from antiviral immunity to treat osteoporosis[J]. Front Immunol, 2022, 13: 1095577.

[本文引用: 1]

MUIRE P J, LOFGREN A L, SHIELS S M, et al. Fracture healing in a polytrauma rat model is influenced by mtDNA: cgas complex mediated pro-inflammation[J]. J Exp Orthop, 2023, 10(1): 90.

[本文引用: 1]

HUANG L, LU S Y, BIAN M X, et al. Punicalagin attenuates TNF-α-induced oxidative damage and promotes osteogenic differentiation of bone mesenchymal stem cells by activating the Nrf2/HO-1 pathway[J]. Exp Cell Res, 2023, 430(1): 113717.

[本文引用: 1]

ARTHUR A, GRONTHOS S. Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue[J]. Int J Mol Sci, 2020, 21(24): E97599759.

[本文引用: 1]

LIN B H, MA R X, WU J T, et al. Cinnamaldehyde alleviates bone loss by targeting oxidative stress and mitochondrial damage via the Nrf2/HO-1 pathway in BMSCs and ovariectomized mice[J]. J Agric Food Chem, 2023, 71(45): 17362-17378.

[本文引用: 1]

HE Z, SUN C, MA Y, et al. Rejuvenating aged bone repair through multihierarchy reactive oxygen species-regulated hydrogel[J]. Adv Mater, 2024, 36(9): e2306552.

[本文引用: 2]

JOMOVA K, ALOMAR S Y, ALWASEL S H, et al. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants[J]. Arch Toxicol, 2024, 98(5): 1323-1367.

[本文引用: 1]

EL-FIQI A, ALLAM R, KIM H W. Antioxidant cerium ions-containing mesoporous bioactive glass ultrasmall nanoparticles: structural, physico-chemical, catalase-mimic and biological properties[J]. Colloids Surf B Biointerfaces, 2021, 206: 111932.

[本文引用: 1]

PESARAKLOU A, MATIN M M. Cerium oxide nanoparticles and their importance in cell signaling pathways for predicting cellular behavior[J]. Nanomedicine (Lond), 2020, 15(17): 1709-1718.

[本文引用: 1]

TU C X, LU H D, ZHOU T, et al. Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties[J]. Biomaterials, 2022, 286: 121597.

[本文引用: 1]

JUNEJO B, SOLANGI Q A, THANI A S B, et al. Physical properties and pharmacological applications of Co3O4, CuO, NiO and ZnO nanoparticles[J]. World J Microbiol Biotechnol, 2023, 39(8): 220.

[本文引用: 1]

FU Y, CUI S, LUO D, et al. Novel inorganic nanomaterial-based therapy for bone tissue regeneration[J]. Nanomaterials (Basel), 2021, 11(3): 789.

[本文引用: 1]

RASOOL N, NEGI D, SINGH Y. Thiol-functionalized, antioxidant, and osteogenic mesoporous silica nanoparticles for osteoporosis[J]. ACS Biomater Sci Eng, 2023, 9(6): 3535-3545.

[本文引用: 1]

TAO Z S, LI T L, YANG M, et al. Silibinin can promote bone regeneration of selenium hydrogel by reducing the oxidative stress pathway in ovariectomized rats[J]. Calcif Tissue Int, 2022, 110(6): 723-735.

[本文引用: 1]

LEE S C, LEE N H, PATEL K D, et al. The effect of selenium nanoparticles on the osteogenic differentiation of MC3T3-E1 cells[J]. Nanomaterials (Basel), 2021, 11(2): 557.

[本文引用: 1]

CHENG W, WEN J. Now and future: development and perspectives of using polyphenol nanomaterials in environmental pollution control[J]. Coordin Chem Rev, 2022, 473: 214825.

[本文引用: 1]

ALCALDE B, GRANADOS M, SAURINA J. Exploring the antioxidant features of polyphenols by spectroscopic and electrochemical methods[J]. Antioxidants (Basel), 2019, 8(11): E523.

[本文引用: 1]

CARUSO F, INCERPI S, PEDERSEN J, et al. Aromatic polyphenol π-π interactions with superoxide radicals contribute to radical scavenging and can make polyphenols mimic superoxide dismutase activity[J]. Curr Issues Mol Biol, 2022, 44(11): 5209-5220.

[本文引用: 1]

GUO Q, YANG S, NI G, et al. The preparation and effects of organic-inorganic antioxidative biomaterials for bone repair[J]. Biomedicines, 2023, 12(1): 70.

[本文引用: 1]

XU Z, WANG T, LIU J. Recent development of polydopamine anti-bacterial nanomaterials[J]. Int J Mol Sci, 2022, 23(13): 7278.

[本文引用: 1]

WU H, ZHAO C, LIN K, et al. Mussel-inspired polydopamine-based multilayered coatings for enhanced bone formation[J]. Front Bioeng Biotechnol, 2022, 10: 952500.

[本文引用: 1]

MAVRIDI-PRINTEZI A, GIORDANI S, MENICHETTI A, et al. The dual nature of biomimetic melanin[J]. Nanoscale, 2024, 16(1): 299-308.

[本文引用: 1]

JODKO-PIÓRECKA K, SIKORA B, KLUZEK M, et al. Antiradical activity of dopamine, L-DOPA, adrenaline, and noradrenaline in water/methanol and in liposomal systems[J]. J Org Chem, 2022, 87(3): 1791-1804.

[本文引用: 1]

HUANG Y Q, DU Z Y, LI K, et al. ROS-scavenging electroactive polyphosphazene-based core-shell nanofibers for bone regeneration[J]. Adv Fiber Mater, 2022, 4(4): 894-907.

[本文引用: 1]

HANG R, ZHAO Y, ZHANG Y, et al. The role of nanopores constructed on the micropitted titanium surface in the immune responses of macrophages and the potential mechanisms[J]. J Mater Chem B, 2022, 10(38): 7732-7743.

[本文引用: 1]

LAO A, WU J, LI D, et al. Functionalized metal-organic framework-modified hydrogel that breaks the vicious cycle of inflammation and ROS for repairing of diabetic bone defects[J]. Small, 2023, 19(36): e2206919.

[本文引用: 1]

LIU Z, WANG T, ZHANG L, et al. Metal-phenolic networks-reinforced extracellular matrix scaffold for bone regeneration via combining radical-scavenging and photo-responsive regulation of microenvironment[J]. Adv Healthc Mater, 2024, 13(15): e2304158.

[本文引用: 1]

ZHOU T, YAN L, XIE C, et al. A mussel-inspired persistent ROS-scavenging, electroactive, and osteoinductive scaffold based on electrochemical-driven in situ nanoassembly[J]. Small, 2019, 15(25): e1805440.

[本文引用: 1]

YANG R, YAN Y R, WU Z, et al. Resveratrol-loaded titania nanotube coatings promote osteogenesis and inhibit inflammation through reducing the reactive oxygen species production via regulation of NF-κB signaling pathway[J]. Mater Sci Eng C, 2021, 131: 112513.

[本文引用: 1]

LI C, WANG Q, GU X, et al. Porous Se@SiO2 nanocomposite promotes migration and osteogenic differentiation of rat bone marrow mesenchymal stem cell to accelerate bone fracture healing in a rat model[J]. Int J Nanomedicine, 2019, 14: 3845-3860.

[本文引用: 1]

HUANG L, ZHANG S H, BIAN M X, et al. Injectable, anti-collapse, adhesive, plastic and bioactive bone graft substitute promotes bone regeneration by moderating oxidative stress in osteoporotic bone defect[J]. Acta Biomater, 2024, 180: 82-103.

[本文引用: 1]

WU Q, HU L, YAN R, et al. Strontium-incorporated bioceramic scaffolds for enhanced osteoporosis bone regeneration[J]. Bone Res, 2022, 10(1): 55.

[本文引用: 1]

BOUCHEZ C, DEVIN A. Mitochondrial biogenesis and mitochondrial reactive oxygen species (ROS): a complex relationship regulated by the cAMP/PKA signaling pathway[J]. Cells, 2019, 8(4): E287.

[本文引用: 1]

HUANG J Y, LI R Q, YANG J H, et al. Bioadaptation of implants to in vitro and in vivo oxidative stress pathological conditions via nanotopography-induced FoxO1 signaling pathways to enhance Osteoimmunal regeneration[J]. Bioact Mater, 2021, 6(10): 3164-3176.

[本文引用: 1]

LI J M, DENG C J, LIANG W Y, et al. Mn-containing bioceramics inhibit osteoclastogenesis and promote osteoporotic bone regeneration via scavenging ROS[J]. Bioact Mater, 2021, 6(11): 3839-3850.

[本文引用: 1]

DENG Q S, LI X R, LIU P L, et al. 3D cryo-printed hierarchical porous scaffolds harmonized with hybrid nanozymes for combinatorial mitochondrial therapy: enhanced diabetic bone regeneration viamicromilieu remodeling[J]. Adv Funct Mater, 2024, 34(39): 2403145.

[本文引用: 1]

SHU C, QIN C, WU A, et al. 3D printing of cobalt-incorporated chloroapatite bioceramic composite scaffolds with antioxidative activity for enhanced osteochondral regeneration[J]. Adv Healthc Mater, 2024, 13(13): e2303217.

[本文引用: 1]

XIE Y, XIAO S, HUANG L, et al. Cascade and ultrafast artificial antioxidases alleviate inflammation and bone resorption in periodontitis[J]. ACS Nano, 2023, 17(15): 15097-15112.

[本文引用: 1]

SHU C, QIN C, CHEN L, et al. Metal-organic framework functionalized bioceramic scaffolds with antioxidative activity for enhanced osteochondral regeneration[J]. Adv Sci (Weinh), 2023, 10(13): e2206875.

[本文引用: 1]

TIAN Q, WANG W, CAO L, et al. Multifaceted catalytic ROS-scavenging via electronic modulated metal oxides for regulating stem cell fate[J]. Adv Mater, 2022, 34(43): e2207275.

[本文引用: 1]

DING Y, MA R, LIU G, et al. Fabrication of a new hyaluronic acid/gelatin nanocomposite hydrogel coating on titanium-based implants for treating biofilm infection and excessive inflammatory response[J]. ACS Appl Mater Interfaces, 2023, 15(10): 13783-13801.

[本文引用: 1]

/