1 |
YUDOH K, SUGISHITA Y, SUZUKI-TAKAHASHI Y. Bone development and regeneration 2.0[J]. Int J Mol Sci, 2023, 24(10): 8761.
|
2 |
SAHOO B M, BANIK B K, BORAH P, et al. Reactive oxygen species (ROS): key components in cancer therapies[J]. Anticancer Agents Med Chem, 2022, 22(2): 215-222.
|
3 |
BOTTJE W G. Oxidative metabolism and efficiency: the delicate balancing act of mitochondria[J]. Poult Sci, 2019, 98(10): 4223-4230.
|
4 |
ZHAO R Z, JIANG S, ZHANG L, et al. Mitochondrial electron transport chain, ROS generation and uncoupling (Review)[J]. Int J Mol Med, 2019, 44(1): 3-15.
|
5 |
LI Z M, ZHAO T F, DING J, et al. A reactive oxygen species-responsive hydrogel encapsulated with bone marrow derived stem cells promotes repair and regeneration of spinal cord injury[J]. Bioact Mater, 2023, 19: 550-568.
|
6 |
GUO Y, GUAN T, SHAFIQ K, et al. Mitochondrial dysfunction in aging[J]. Ageing Res Rev, 2023, 88: 101955.
|
7 |
SABNAM S, RIZWAN H, PAL S, et al. CEES-induced ROS accumulation regulates mitochondrial complications and inflammatory response in keratinocytes[J]. Chem Biol Interact, 2020, 321: 109031.
|
8 |
ZHOU L, ZHANG Y F, YANG F H, et al. Mitochondrial DNA leakage induces odontoblast inflammation via the cGAS-STING pathway[J]. Cell Commun Signal, 2021, 19(1): 58.
|
9 |
GAO Z, GAO Z, ZHANG H, et al. Targeting STING: from antiviral immunity to treat osteoporosis[J]. Front Immunol, 2022, 13: 1095577.
|
10 |
MUIRE P J, LOFGREN A L, SHIELS S M, et al. Fracture healing in a polytrauma rat model is influenced by mtDNA: cgas complex mediated pro-inflammation[J]. J Exp Orthop, 2023, 10(1): 90.
|
11 |
HUANG L, LU S Y, BIAN M X, et al. Punicalagin attenuates TNF-α-induced oxidative damage and promotes osteogenic differentiation of bone mesenchymal stem cells by activating the Nrf2/HO-1 pathway[J]. Exp Cell Res, 2023, 430(1): 113717.
|
12 |
ARTHUR A, GRONTHOS S. Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue[J]. Int J Mol Sci, 2020, 21(24): E97599759.
|
13 |
LIN B H, MA R X, WU J T, et al. Cinnamaldehyde alleviates bone loss by targeting oxidative stress and mitochondrial damage via the Nrf2/HO-1 pathway in BMSCs and ovariectomized mice[J]. J Agric Food Chem, 2023, 71(45): 17362-17378.
|
14 |
HE Z, SUN C, MA Y, et al. Rejuvenating aged bone repair through multihierarchy reactive oxygen species-regulated hydrogel[J]. Adv Mater, 2024, 36(9): e2306552.
|
15 |
JOMOVA K, ALOMAR S Y, ALWASEL S H, et al. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants[J]. Arch Toxicol, 2024, 98(5): 1323-1367.
|
16 |
EL-FIQI A, ALLAM R, KIM H W. Antioxidant cerium ions-containing mesoporous bioactive glass ultrasmall nanoparticles: structural, physico-chemical, catalase-mimic and biological properties[J]. Colloids Surf B Biointerfaces, 2021, 206: 111932.
|
17 |
PESARAKLOU A, MATIN M M. Cerium oxide nanoparticles and their importance in cell signaling pathways for predicting cellular behavior[J]. Nanomedicine (Lond), 2020, 15(17): 1709-1718.
|
18 |
TU C X, LU H D, ZHOU T, et al. Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties[J]. Biomaterials, 2022, 286: 121597.
|
19 |
JUNEJO B, SOLANGI Q A, THANI A S B, et al. Physical properties and pharmacological applications of Co3O4, CuO, NiO and ZnO nanoparticles[J]. World J Microbiol Biotechnol, 2023, 39(8): 220.
|
20 |
FU Y, CUI S, LUO D, et al. Novel inorganic nanomaterial-based therapy for bone tissue regeneration[J]. Nanomaterials (Basel), 2021, 11(3): 789.
|
21 |
RASOOL N, NEGI D, SINGH Y. Thiol-functionalized, antioxidant, and osteogenic mesoporous silica nanoparticles for osteoporosis[J]. ACS Biomater Sci Eng, 2023, 9(6): 3535-3545.
|
22 |
TAO Z S, LI T L, YANG M, et al. Silibinin can promote bone regeneration of selenium hydrogel by reducing the oxidative stress pathway in ovariectomized rats[J]. Calcif Tissue Int, 2022, 110(6): 723-735.
|
23 |
LEE S C, LEE N H, PATEL K D, et al. The effect of selenium nanoparticles on the osteogenic differentiation of MC3T3-E1 cells[J]. Nanomaterials (Basel), 2021, 11(2): 557.
|
24 |
CHENG W, WEN J. Now and future: development and perspectives of using polyphenol nanomaterials in environmental pollution control[J]. Coordin Chem Rev, 2022, 473: 214825.
|
25 |
ALCALDE B, GRANADOS M, SAURINA J. Exploring the antioxidant features of polyphenols by spectroscopic and electrochemical methods[J]. Antioxidants (Basel), 2019, 8(11): E523.
|
26 |
CARUSO F, INCERPI S, PEDERSEN J, et al. Aromatic polyphenol π-π interactions with superoxide radicals contribute to radical scavenging and can make polyphenols mimic superoxide dismutase activity[J]. Curr Issues Mol Biol, 2022, 44(11): 5209-5220.
|
27 |
GUO Q, YANG S, NI G, et al. The preparation and effects of organic-inorganic antioxidative biomaterials for bone repair[J]. Biomedicines, 2023, 12(1): 70.
|
28 |
XU Z, WANG T, LIU J. Recent development of polydopamine anti-bacterial nanomaterials[J]. Int J Mol Sci, 2022, 23(13): 7278.
|
29 |
WU H, ZHAO C, LIN K, et al. Mussel-inspired polydopamine-based multilayered coatings for enhanced bone formation[J]. Front Bioeng Biotechnol, 2022, 10: 952500.
|
30 |
MAVRIDI-PRINTEZI A, GIORDANI S, MENICHETTI A, et al. The dual nature of biomimetic melanin[J]. Nanoscale, 2024, 16(1): 299-308.
|
31 |
JODKO-PIÓRECKA K, SIKORA B, KLUZEK M, et al. Antiradical activity of dopamine, L-DOPA, adrenaline, and noradrenaline in water/methanol and in liposomal systems[J]. J Org Chem, 2022, 87(3): 1791-1804.
|
32 |
HUANG Y Q, DU Z Y, LI K, et al. ROS-scavenging electroactive polyphosphazene-based core-shell nanofibers for bone regeneration[J]. Adv Fiber Mater, 2022, 4(4): 894-907.
|
33 |
HANG R, ZHAO Y, ZHANG Y, et al. The role of nanopores constructed on the micropitted titanium surface in the immune responses of macrophages and the potential mechanisms[J]. J Mater Chem B, 2022, 10(38): 7732-7743.
|
34 |
LAO A, WU J, LI D, et al. Functionalized metal-organic framework-modified hydrogel that breaks the vicious cycle of inflammation and ROS for repairing of diabetic bone defects[J]. Small, 2023, 19(36): e2206919.
|
35 |
LIU Z, WANG T, ZHANG L, et al. Metal-phenolic networks-reinforced extracellular matrix scaffold for bone regeneration via combining radical-scavenging and photo-responsive regulation of microenvironment[J]. Adv Healthc Mater, 2024, 13(15): e2304158.
|
36 |
ZHOU T, YAN L, XIE C, et al. A mussel-inspired persistent ROS-scavenging, electroactive, and osteoinductive scaffold based on electrochemical-driven in situ nanoassembly[J]. Small, 2019, 15(25): e1805440.
|
37 |
YANG R, YAN Y R, WU Z, et al. Resveratrol-loaded titania nanotube coatings promote osteogenesis and inhibit inflammation through reducing the reactive oxygen species production via regulation of NF-κB signaling pathway[J]. Mater Sci Eng C, 2021, 131: 112513.
|
38 |
LI C, WANG Q, GU X, et al. Porous Se@SiO2 nanocomposite promotes migration and osteogenic differentiation of rat bone marrow mesenchymal stem cell to accelerate bone fracture healing in a rat model[J]. Int J Nanomedicine, 2019, 14: 3845-3860.
|
39 |
HUANG L, ZHANG S H, BIAN M X, et al. Injectable, anti-collapse, adhesive, plastic and bioactive bone graft substitute promotes bone regeneration by moderating oxidative stress in osteoporotic bone defect[J]. Acta Biomater, 2024, 180: 82-103.
|
40 |
WU Q, HU L, YAN R, et al. Strontium-incorporated bioceramic scaffolds for enhanced osteoporosis bone regeneration[J]. Bone Res, 2022, 10(1): 55.
|
41 |
BOUCHEZ C, DEVIN A. Mitochondrial biogenesis and mitochondrial reactive oxygen species (ROS): a complex relationship regulated by the cAMP/PKA signaling pathway[J]. Cells, 2019, 8(4): E287.
|
42 |
HUANG J Y, LI R Q, YANG J H, et al. Bioadaptation of implants to in vitro and in vivo oxidative stress pathological conditions via nanotopography-induced FoxO1 signaling pathways to enhance Osteoimmunal regeneration[J]. Bioact Mater, 2021, 6(10): 3164-3176.
|
43 |
LI J M, DENG C J, LIANG W Y, et al. Mn-containing bioceramics inhibit osteoclastogenesis and promote osteoporotic bone regeneration via scavenging ROS[J]. Bioact Mater, 2021, 6(11): 3839-3850.
|
44 |
DENG Q S, LI X R, LIU P L, et al. 3D cryo-printed hierarchical porous scaffolds harmonized with hybrid nanozymes for combinatorial mitochondrial therapy: enhanced diabetic bone regeneration viamicromilieu remodeling[J]. Adv Funct Mater, 2024, 34(39): 2403145.
|
45 |
SHU C, QIN C, WU A, et al. 3D printing of cobalt-incorporated chloroapatite bioceramic composite scaffolds with antioxidative activity for enhanced osteochondral regeneration[J]. Adv Healthc Mater, 2024, 13(13): e2303217.
|
46 |
XIE Y, XIAO S, HUANG L, et al. Cascade and ultrafast artificial antioxidases alleviate inflammation and bone resorption in periodontitis[J]. ACS Nano, 2023, 17(15): 15097-15112.
|
47 |
SHU C, QIN C, CHEN L, et al. Metal-organic framework functionalized bioceramic scaffolds with antioxidative activity for enhanced osteochondral regeneration[J]. Adv Sci (Weinh), 2023, 10(13): e2206875.
|
48 |
TIAN Q, WANG W, CAO L, et al. Multifaceted catalytic ROS-scavenging via electronic modulated metal oxides for regulating stem cell fate[J]. Adv Mater, 2022, 34(43): e2207275.
|
49 |
DING Y, MA R, LIU G, et al. Fabrication of a new hyaluronic acid/gelatin nanocomposite hydrogel coating on titanium-based implants for treating biofilm infection and excessive inflammatory response[J]. ACS Appl Mater Interfaces, 2023, 15(10): 13783-13801.
|