1 |
张珀, 邓云, 桂阳, 等. 抗血栓药物作用机制的研究进展[J]. 基层医学论坛, 2020, 24(25): 3682-3685.
|
2 |
Tscharre M, Michelson AD, Gremmel T. Novel antiplatelet agents in cardiovascular disease[J]. J Cardiovasc Pharmacol Ther, 2020, 25(3): 191-200.
|
3 |
刘莅欣, 胡桃红. 血栓性疾病抗栓治疗的研究进展[J]. 中国临床医生, 2013, 41(5): 15-17.
|
4 |
徐亭亭, 石慧, 王平保, 等. 靶向凝血因子的新型口服抗凝药物研究进展[J]. 中国药物化学杂志, 2020, 30(10): 636-642.
|
5 |
孙思, 赵爱民. 复发性流产常用抗凝及抗血小板药物妊娠期暴露的安全性[J]. 上海交通大学学报(医学版), 2020, 40(3): 402-407.
|
6 |
陈一竹, 张俊峰. 抗血小板治疗新靶点: 糖蛋白Ⅵ[J]. 上海交通大学学报(医学版), 2015, 35(7): 1078-1081.
|
7 |
Topol EJ. Toward a new frontier in myocardial reperfusion therapy: emerging platelet preeminence[J]. Circulation, 1998, 97(2): 211-218.
|
8 |
Adeboyeje G, Sylwestrzak G, Barron JJ, et al. Major bleeding risk during anticoagulation with warfarin, dabigatran, apixaban, or rivaroxaban in patients with nonvalvular atrial fibrillation[J]. J Manag Care Specialty Pharm, 2017, 23(9): 968-978.
|
9 |
Toomey JR, Smith KJ, Stafford DW. Localization of the human tissue factor recognition determinant of human factor Ⅶa[J]. J Biol Chem, 1991, 266(29): 19198-19202.
|
10 |
余婷. 刺囊酸, 皂皮酸及金合欢酸内酯的合成研究[D]. 南昌: 江西师范大学, 2019.
|
11 |
Misenheimer TM, Yang BY, Sheehan JP. The heparin-binding exosite is critical to allosteric activation of factor Ⅸa in the intrinsic tenase complex: the role of arginine 165 and factor Ⅹ[J]. Biochemistry, 2007, 46(26): 7886-7895.
|
12 |
Spanier TB, Chen JM, Oz MC, et al. Selective anticoagulation with active site-blocked factor Ⅸa suggests separate roles for intrinsic and extrinsic coagulation pathways in cardiopulmonary bypass[J]. J Thorac Cardiovasc Surg, 1998, 116(5): 860-869.
|
13 |
Lawson JH, Mann KG. Cooperative activation of human factor Ⅸ by the human extrinsic pathway of blood coagulation[J]. J Biol Chem, 1991, 266(17): 11317-11327.
|
14 |
Hoffman M, Monroe DM, Oliver JA, et al. Factors Ⅸa and Ⅹa play distinct roles in tissue factor-dependent initiation of coagulation[J]. Blood, 1995, 86(5): 1794-1801.
|
15 |
Butenas S, Orfeo T, Gissel MT, et al. The significance of circulating factor Ⅸa in blood[J]. J Biol Chem, 2004, 279(22): 22875-22882.
|
16 |
Boisclair MD, Lane DA, Philippou H, et al. Thrombin production, inactivation and expression during open heart surgery measured by assays for activation fragments including a new ELISA for prothrombin fragment F1+2[J]. Thromb Haemost, 1993, 70(2): 253-258.
|
17 |
Lollar P, Fass DN. Inhibition of activated porcine factor Ⅸ by dansyl-glutamyl-glycyl-arginyl-chloromethylketone[J]. Arch Biochem Biophys, 1984, 233(2): 438-446.
|
18 |
Benedict CR, Ryan J, Wolitzky B, et al. Active site-blocked factor Ⅸa prevents intravascular thrombus formation in the coronary vasculature without inhibiting extravascular coagulation in a canine thrombosis model[J]. J Clin Invest, 1991, 88(5): 1760-1765.
|
19 |
Walsh PN. Roles of factor Ⅺ, platelets and tissue factor-initiated blood coagulation[J]. J Thromb Haemost, 2003, 1(10): 2081-2086.
|
20 |
Mathur A, Zhong D, Sabharwal AK, et al. Interaction of factor Ⅸa with factor Ⅷa. Effects of protease domain Ca2+ binding site, proteolysis in the autolysis loop, phospholipid, and factor Ⅹ[J]. J Biol Chem, 1997, 272(37): 23418-23426.
|
21 |
Lenting PJ, Christophe OD, Maat H, et al. Ca2+ binding to the first epidermal growth factor-like domain of human blood coagulation factor Ⅸ promotes enzyme activity and factor Ⅷ light chain binding[J]. J Biol Chem, 1996, 271(41): 25332-25337.
|
22 |
Smiley DA, Becker RC. Factor Ⅸa as a target for anticoagulation in thrombotic disorders and conditions[J]. Drug Discov Today, 2014, 19(9): 1445-1453.
|
23 |
Venkateswarlu D. Structural insights into the interaction of blood coagulation co-factor Ⅷa with factor Ⅸa: a computational protein-protein docking and molecular dynamics refinement study[J]. Biochem Biophys Res Commun, 2014, 452(3): 408-414.
|
24 |
Dunbar J, Krawczyk K, Leem J, et al. SAbPred: a structure-based antibody prediction server[J]. Nucleic Acids Res, 2016, 44(W1): W474-W478.
|
25 |
Brenke R, Hall DR, Chuang GY, et al. Application of asymmetric statistical potentials to antibody-protein docking[J]. Bioinformatics, 2012, 28(20): 2608-2614.
|
26 |
Verhoef D, Visscher KM, Vosmeer CR, et al. Engineered factor Ⅹa variants retain procoagulant activity independent of direct factor Ⅹa inhibitors[J]. Nat Commun, 2017, 8(1): 528.
|
27 |
Scheiflinger F, Dockal M, Rosing J, et al. Enhancement of the enzymatic activity of activated coagulation factor Ⅸ by anti-factor Ⅸ antibodies[J]. J Thromb Haemost, 2008, 6(2): 315-322.
|
28 |
Lu QY, Yang LK, Manithody C, et al. Molecular basis of the clotting defect in a bleeding patient missing the Asp-185 codon in the factor Ⅹ gene[J]. Thromb Res, 2014, 134(5): 1103-1109.
|
29 |
DeLano WL. The PyMOL molecular graphics system[J]. Protein Struct Funct Genet, 2002, 30: 442-454.
|
30 |
Xu YM, Cai C, Chandarajoti K, et al. Homogeneous low-molecular-weight heparins with reversible anticoagulant activity[J]. Nat Chem Biol, 2014, 10(4): 248-250.
|
31 |
Weitz JI, Buller HR. Direct thrombin inhibitors in acute coronary syndromes: present and future[J]. Circulation, 2002, 105(8): 1004-1011.
|
32 |
Choudhri TF, Hoh BL, Prestigiacomo CJ, et al. Targeted inhibition of intrinsic coagulation limits cerebral injury in stroke without increasing intracerebral hemorrhage[J]. J Exp Med, 1999, 190(1): 91-99.
|