上海交通大学学报(医学版) ›› 2021, Vol. 41 ›› Issue (12): 1684-1690.doi: 10.3969/j.issn.1674-8115.2021.12.020
• 综述 • 上一篇
收稿日期:
2021-08-04
出版日期:
2021-12-28
发布日期:
2022-01-28
通讯作者:
欧阳凤秀
E-mail:marui9145@126.com;ouyangfengxiu@xinhuamed.com.cn
作者简介:
马 蕊(1991—),女,博士生;电子信箱:marui9145@126.com。
基金资助:
Rui MA(), Shu-jin CHEN, Feng-xiu OUYANG()
Received:
2021-08-04
Online:
2021-12-28
Published:
2022-01-28
Contact:
Feng-xiu OUYANG
E-mail:marui9145@126.com;ouyangfengxiu@xinhuamed.com.cn
Supported by:
摘要:
孕期营养与妊娠结局及子代健康密切相关。长链多不饱和脂肪酸(polyunsaturated fatty acids,PUFAs)主要包括二十二碳六烯酸(docosahexaenoic acid,DHA)、二十碳五烯酸(eicosapentaenoic acid,EPA)、花生四烯酸(arachidonic acid,AA)、α-亚麻酸(α-linolenic acid,ALA)及亚油酸(linoleic acid,LA)。人体DHA、EPA和AA主要通过膳食摄入或由必需脂肪酸ALA及LA合成。PUFAs是体内胆固醇酯、磷脂及脂肪的重要组成成分,参与细胞膜的构成,可作为第二信使前体传递信号;可转化合成激素及PUFAs衍生物,通过多种途经,发挥复杂的生物学功能。妇女孕期n-3 PUFAs(EPA、DHA)不足,可能与先兆子痫、早产及产后抑郁的发病风险增高有关,并影响儿童心血管远期健康,但这些相关性还存在一定的争议。母亲孕期n-3 PUFAs(EPA、DHA)的摄入可能与儿童喘息及哮喘风险降低有关,而n-6 PUFAs(AA)摄入量过多可能与哮喘、过敏性鼻炎的风险增加有关。对DHA不足的早产儿,及时补充DHA可促进神经发育。目前缺乏孕妇及新生儿这一敏感人群PUFAs正常参考范围,有必要进一步研究和建立相关标准,以便合理指导孕妇孕期PUFAs营养。
中图分类号:
马蕊, 陈书进, 欧阳凤秀. 孕期多不饱和脂肪酸对母婴健康影响的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(12): 1684-1690.
Rui MA, Shu-jin CHEN, Feng-xiu OUYANG. Research progress in the association between maternal prenatal polyunsaturated fatty acids and maternal and infant health[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(12): 1684-1690.
Author (Year) | Region | Sample size/n | Pregnancy | Sample | DHA/% | EPA/% | AA/% |
---|---|---|---|---|---|---|---|
Araujo (2020) [ | Norway | 247 | 17‒40 week | Erythrocyte | 6.92 (mean) | 0.79 (mean) | 10.84 (mean) |
Nita (2020) [ | Japan | 416 | 24‒30 week | Erythrocyte | 7.44±1.12 | 0.74 (0.55‒1.04) | 11.38±1.03 |
Hoge (2018) [ | Belgium | 122 | 1st trimester | Erythrocyte | 5.27±1.42 | 0.51±0.25 | 14.30±1.26 |
Kitamura (2017) [ | Japan | 213 | 1st trimester | Erythrocyte | 6.23±1.14 | 0.98±0.38 | 10.96±1.43 |
Barrera (2018) [ | Chile | 60 | 2nd trimester | Erythrocyte | 4.16±0.60 | 0.98±0.10 | 12.90±1.20 |
Much (2013) [ | Germany | 102 | 2nd trimester | Erythrocyte | 4.54±1.24 | 0.41±0.15 | 12.51±2.30 |
Steer (2012) [ | England | 4 346 | ≥20 weeks | Erythrocyte | 2.01 (1.24‒3.05) | 0.24 (0.16‒0.36) | 6.09 (3.89‒8.36) |
Kitamura (2017) [ | Japan | 213 | 3rd trimester | Erythrocyte | 5.86±1.01 | 0.80±0.39 | 8.83±1.36 |
Gellert (2016) [ | Germany | 213 | 3rd trimester | Erythrocyte | 6.10±1.29 | 0.52±0.19 | 13.88±1.68 |
Matsumoto (2020) [ | Japan | 204 | 24‒30 weeks | Plasma | 5.66 (median) | 0.85 (median) | 8.28 (median) |
Voortman (2018) [ | Netherlands | 6 999 | 2nd trimester | Plasma | 4.67 (median) | 0.44 (median) | 9.72 (median) |
Wolfe (2011) [ | America | 52 | Delivery | Serum | 2.07 (median) | 0.27 (median) | 4.94 (median) |
表1 健康孕妇妊娠期血PUFAs水平
Tab 1 Blood PUFAs levels of healthy pregnant women during pregnancy
Author (Year) | Region | Sample size/n | Pregnancy | Sample | DHA/% | EPA/% | AA/% |
---|---|---|---|---|---|---|---|
Araujo (2020) [ | Norway | 247 | 17‒40 week | Erythrocyte | 6.92 (mean) | 0.79 (mean) | 10.84 (mean) |
Nita (2020) [ | Japan | 416 | 24‒30 week | Erythrocyte | 7.44±1.12 | 0.74 (0.55‒1.04) | 11.38±1.03 |
Hoge (2018) [ | Belgium | 122 | 1st trimester | Erythrocyte | 5.27±1.42 | 0.51±0.25 | 14.30±1.26 |
Kitamura (2017) [ | Japan | 213 | 1st trimester | Erythrocyte | 6.23±1.14 | 0.98±0.38 | 10.96±1.43 |
Barrera (2018) [ | Chile | 60 | 2nd trimester | Erythrocyte | 4.16±0.60 | 0.98±0.10 | 12.90±1.20 |
Much (2013) [ | Germany | 102 | 2nd trimester | Erythrocyte | 4.54±1.24 | 0.41±0.15 | 12.51±2.30 |
Steer (2012) [ | England | 4 346 | ≥20 weeks | Erythrocyte | 2.01 (1.24‒3.05) | 0.24 (0.16‒0.36) | 6.09 (3.89‒8.36) |
Kitamura (2017) [ | Japan | 213 | 3rd trimester | Erythrocyte | 5.86±1.01 | 0.80±0.39 | 8.83±1.36 |
Gellert (2016) [ | Germany | 213 | 3rd trimester | Erythrocyte | 6.10±1.29 | 0.52±0.19 | 13.88±1.68 |
Matsumoto (2020) [ | Japan | 204 | 24‒30 weeks | Plasma | 5.66 (median) | 0.85 (median) | 8.28 (median) |
Voortman (2018) [ | Netherlands | 6 999 | 2nd trimester | Plasma | 4.67 (median) | 0.44 (median) | 9.72 (median) |
Wolfe (2011) [ | America | 52 | Delivery | Serum | 2.07 (median) | 0.27 (median) | 4.94 (median) |
Author (Year) | Region | Sample size/n | Sample | DHA/% | EPA/% | AA/% |
---|---|---|---|---|---|---|
Nita (2020) [ | Japan | 383 | Erythrocyte | 6.79±0.93 | 0.28 (0.20‒0.39) | 15.35±1.28 |
Kitamura (2018) [ | Japan | 114 | Erythrocyte | 7.54±0.08 | 0.43±0.02 | 16.03±0.11 |
Much (2013) [ | Germany | 65 | Erythrocyte | 2.54±2.19 | 0.08±0.06 | 7.62±4.85 |
Matsumoto (2020) [ | Japan | 203 | Plasma | 5.98 (median) | 0.60 (median) | 17.06 (median) |
Montes (2013) [ | Spain | 170 | Plasma | 4.53±1.12 | 0.19±0.11 | 14.13±1.84 |
Steer (2012) [ | England | 3 394 | Plasma | 2.45 (1.85‒3.44) | 0.19 (0.14‒0.25) | 8.94 (7.16‒11.53) |
Kohlboeck (2011) [ | Germany | 416 | Serum | 7.15±1.33 | 0.30±0.13 | 18.03±1.55 |
Wolfe (2011) [ | America | 52 | Serum | 3.24 (median) | 1.06 (median) | 9.64 (median) |
表2 新生儿脐带血PUFAs水平
Tab 2 Umbilical cord blood PUFAs levels of newborns
Author (Year) | Region | Sample size/n | Sample | DHA/% | EPA/% | AA/% |
---|---|---|---|---|---|---|
Nita (2020) [ | Japan | 383 | Erythrocyte | 6.79±0.93 | 0.28 (0.20‒0.39) | 15.35±1.28 |
Kitamura (2018) [ | Japan | 114 | Erythrocyte | 7.54±0.08 | 0.43±0.02 | 16.03±0.11 |
Much (2013) [ | Germany | 65 | Erythrocyte | 2.54±2.19 | 0.08±0.06 | 7.62±4.85 |
Matsumoto (2020) [ | Japan | 203 | Plasma | 5.98 (median) | 0.60 (median) | 17.06 (median) |
Montes (2013) [ | Spain | 170 | Plasma | 4.53±1.12 | 0.19±0.11 | 14.13±1.84 |
Steer (2012) [ | England | 3 394 | Plasma | 2.45 (1.85‒3.44) | 0.19 (0.14‒0.25) | 8.94 (7.16‒11.53) |
Kohlboeck (2011) [ | Germany | 416 | Serum | 7.15±1.33 | 0.30±0.13 | 18.03±1.55 |
Wolfe (2011) [ | America | 52 | Serum | 3.24 (median) | 1.06 (median) | 9.64 (median) |
1 | Zhao WN, Hylton NK, Wang J, et al. Activation of WNT and CREB signaling pathways in human neuronal cells in response to the Omega-3 fatty acid docosahexaenoic acid (DHA)[J]. Mol Cell Neurosci, 2019, 99: 103386. |
2 | Bakouei F, Delavar MA, Mashayekh-Amiri S, et al. Efficacy of n-3 fatty acids supplementation on the prevention of pregnancy induced-hypertension or preeclampsia: a systematic review and meta-analysis[J]. Taiwan J Obstet Gynecol, 2020, 59(1): 8-15. |
3 | Middleton P, Gomersall JC, Gould JF, et al. Omega-3 fatty acid addition during pregnancy[J]. Cochrane Database Syst Rev, 2018, 11(11): CD003402. |
4 | Cinelli G, Fabrizi M, Ravà L, et al. Association between maternal and foetal erythrocyte fatty acid profiles and birth weight[J]. Nutrients, 2018, 10(4): 402. |
5 | Hoge A, Tabar V, Donneau AF, et al. Imbalance between omega-6 and omega-3 polyunsaturated fatty acids in early pregnancy is predictive of postpartum depression in a Belgian cohort[J]. Nutrients, 2019, 11(4): 876. |
6 | Wang Q, Cui Q, Yan C. The effect of supplementation of long-chain polyunsaturated fatty acids during lactation on neurodevelopmental outcomes of preterm infant from infancy to school age: a systematic review and meta-analysis[J]. Pediatr Neurol, 2016, 59: 54-61.e1. |
7 | Drewery ML, Gaitán AV, Spedale SB, et al. Maternal n-6 and n-3 fatty acid status during pregnancy is related to infant heart rate and heart rate variability: an exploratory study[J]. Prostaglandins Leukot Essent Fatty Acids, 2017, 126: 117-125. |
8 | Pham MN, Bunyavanich S. Prenatal diet and the development of childhood allergic diseases: food for thought[J]. Curr Allergy Asthma Rep, 2018, 18(11): 58. |
9 | Rosa MJ, Hartman TJ, Adgent M, et al. Prenatal polyunsaturated fatty acids and child asthma: effect modification by maternal asthma and child sex[J]. J Allergy Clin Immunol, 2020, 145(3): 800-807.e4. |
10 | Basak S, Mallick R, Duttaroy AK. Maternal docosahexaenoic acid status during pregnancy and its impact on infant neurodevelopment[J]. Nutrients, 2020, 12(12): 3615. |
11 | Shrestha N, Holland OJ, Kent NL, et al. Maternal high linoleic acid alters placental fatty acid composition[J]. Nutrients, 2020, 12(8): 2183. |
12 | Zhang ZY, Fulgoni VL, Kris-Etherton PM, et al. Dietary intakes of EPA and DHA omega-3 fatty acids among US childbearing-age and pregnant women: an analysis of NHANES 2001—2014[J]. Nutrients, 2018, 10(4): 416. |
13 | Lewis RM, Wadsack C, Desoye G. Placental fatty acid transfer[J]. Curr Opin Clin Nutr Metab Care, 2018, 21(2): 78-82. |
14 | Metherel AH, Armstrong JM, Patterson AC, et al. Assessment of blood measures of n-3 polyunsaturated fatty acids with acute fish oil supplementation and washout in men and women[J]. Prostaglandins Leukot Essent Fatty Acids, 2009, 81(1): 23-29. |
15 | Micalizzi G, Ragosta E, Farnetti S, et al. Rapid and miniaturized qualitative and quantitative gas chromatography profiling of human blood total fatty acids[J]. Anal Bioanal Chem, 2020, 412(10): 2327-2337. |
16 | Hoving LR, Heijink M, van Harmelen V, et al. GC-MS analysis of medium- and long-chain fatty acids in blood samples[J]. Methods Mol Biol, 2018, 1730: 257-265. |
17 | Petenuci ME, Dos Santos VJ, Gualda IP, et al. Fatty acid composition and nutritional profiles of Brycon spp. from central Amazonia by different methods of quantification[J]. J Food Sci Technol, 2019, 56(3): 1551-1558. |
18 | Hoge A, Bernardy F, Donneau AF, et al. Low omega-3 index values and monounsaturated fatty acid levels in early pregnancy: an analysis of maternal erythrocytes fatty acids[J]. Lipids Health Dis, 2018, 17(1): 63. |
19 | Kawabata T, Kagawa Y, Kimura F, et al. Polyunsaturated fatty acid levels in maternal erythrocytes of Japanese women during pregnancy and after childbirth[J]. Nutrients, 2017, 9(3): 245. |
20 | Araujo P, Kjellevold M, Nerhus I, et al. Fatty acid reference intervals in red blood cells among pregnant women in Norway-cross sectional data from the ̒̒little in Norway' cohort[J]. Nutrients,2020, 12(10): 2950. |
21 | Nita R, Kawabata T, Kagawa Y, et al. Associations of erythrocyte fatty acid compositions with FADS1 gene polymorphism in Japanese mothers and infants[J]. Prostaglandins Leukot Essent Fatty Acids, 2020, 152: 102031. |
22 | Kitamura Y, Kogomori C, Hamano H, et al. Relationship between changes in fatty acid composition of the erythrocyte membranes and fatty acid intake during pregnancy in pregnant Japanese women[J]. Ann Nutr Metab, 2017, 70(4): 268-276. |
23 | Barrera C, Valenzuela R, Chamorro R, et al. The impact of maternal diet during pregnancy and lactation on the fatty acid composition of erythrocytes and breast milk of Chilean women[J]. Nutrients, 2018, 10(7): 839. |
24 | Much D, Brunner S, Vollhardt C, et al. Effect of dietary intervention to reduce the n-6/n-3 fatty acid ratio on maternal and fetal fatty acid profile and its relation to offspring growth and body composition at 1 year of age[J]. Eur J Clin Nutr, 2013, 67(3): 282-288. |
25 | Steer CD, Hibbeln JR, Golding J, et al. Polyunsaturated fatty acid levels in blood during pregnancy, at birth and at 7 years: their associations with two common FADS2 polymorphisms[J]. Hum Mol Genet, 2012, 21(7): 1504-1512. |
26 | Gellert S, Schuchardt JP, Hahn A. Higher omega-3 index and DHA status in pregnant women compared to lactating women: results from a German nation-wide cross-sectional study[J]. Prostaglandins Leukot Essent Fatty Acids, 2016, 109: 22-28. |
27 | Matsumoto A, Kawabata T, Kagawa Y, et al. Associations of umbilical cord fatty acid profiles and desaturase enzyme indices with birth weight for gestational age in Japanese infants[J]. Prostaglandins Leukot Essent Fatty Acids, 2021, 165: 102233. |
28 | Voortman T, Tielemans MJ, Stroobant W, et al. Plasma fatty acid patterns during pregnancy and child's growth, body composition, and cardiometabolic health: the Generation R Study[J]. Clin Nutr, 2018, 37(3): 984-992. |
29 | Wolfe MD, Chuang LT, Rayburn WF, et al. Low fatty acid concentrations in neonatal cord serum correlate with maternal serum[J]. J Matern Fetal Neonatal Med, 2012, 25(8): 1292-1296. |
30 | Otto SJ, Houwelingen AC, Antal M, et al. Maternal and neonatal essential fatty acid status in phospholipids: an international comparative study[J]. Eur J Clin Nutr, 1997, 51(4): 232-242. |
31 | Kim H, Oh B, Park-Min KH. Regulation of osteoclast differentiation and activity by lipid metabolism[J]. Cells, 2021, 10(1): 89. |
32 | Bruschi M, Santucci L, Petretto A, et al. Association between maternal omega-3 polyunsaturated fatty acids supplementation and preterm delivery: a proteomic study[J]. FASEB J, 2020, 34(5): 6322-6334. |
33 | Kitamura Y, Kogomori C, Hamano H, et al. Fatty acid composition of the erythrocyte membranes varies between early-term, full-term, and late-term infants in Japan[J]. Ann Nutr Metab, 2018, 73(4): 335-343. |
34 | Montes R, Chisaguano AM, Castellote AI, et al. Fatty-acid composition of maternal and umbilical cord plasma and early childhood atopic eczema in a Spanish cohort[J]. Eur J Clin Nutr, 2013, 67(6): 658-663. |
35 | Kohlboeck G, Glaser C, Tiesler C, et al. Effect of fatty acid status in cord blood serum on children's behavioral difficulties at 10 y of age: results from the LISAplus Study[J]. Am J Clin Nutr, 2011, 94(6): 1592-1599. |
36 | Stewart DE, Vigod SN. Postpartum depression: pathophysiology, treatment, and emerging therapeutics[J]. Annu Rev Med, 2019, 70: 183-196. |
37 | Hibbeln JR. Seafood consumption, the DHA content of mothers' milk and prevalence rates of postpartum depression: a cross-national, ecological analysis[J]. J Affect Disord, 2002, 69(1/2/3): 15-29. |
38 | Otto SJ, de Groot RH, Hornstra G. Increased risk of postpartum depressive symptoms is associated with slower normalization after pregnancy of the functional docosahexaenoic acid status[J]. Prostaglandins Leukot Essent Fatty Acids, 2003, 69(4): 237-243. |
39 | Hsu MC, Tung CY, Chen HE. Omega-3 polyunsaturated fatty acid supplementation in prevention and treatment of maternal depression: putative mechanism and recommendation[J]. J Affect Disord, 2018, 238: 47-61. |
40 | Trujillo J, Vieira MC, Lepsch J, et al. A systematic review of the associations between maternal nutritional biomarkers and depression and/or anxiety during pregnancy and postpartum[J]. J Affect Disord, 2018, 232: 185-203. |
41 | Turbeville HR, Sasser JM. Preeclampsia beyond pregnancy: long-term consequences for mother and child[J]. Am J Physiol Renal Physiol, 2020, 318(6): F1315-F1326. |
42 | Kulkarni AV, Mehendale SS, Yadav HR, et al. Circulating angiogenic factors and their association with birth outcomes in preeclampsia[J]. Hypertens Res, 2010, 33(6): 561-567. |
43 | Mackay VA, Huda SS, Stewart FM, et al. Preeclampsia is associated with compromised maternal synthesis of long-chain polyunsaturated fatty acids, leading to offspring deficiency[J]. Hypertension, 2012, 60(4): 1078-1085. |
44 | Vogel JP, Chawanpaiboon S, Moller AB, et al. The global epidemiology of preterm birth[J]. Best Pract Res Clin Obstet Gynaecol, 2018, 52: 3-12. |
45 | Martin JA, Osterman MJK. Describing the increase in preterm births in the United States, 2014—2016[J]. NCHS Data Brief, 2018(312): 1-8. |
46 | Makrides M, Best K, Yelland L, et al. A randomized trial of prenatal n-3 fatty acid supplementation and preterm delivery[J]. N Engl J Med, 2019, 381(11): 1035-1045. |
47 | Kesavan K, Devaskar SU. Intrauterine growth restriction: postnatal monitoring and outcomes[J]. Pediatr Clin North Am, 2019, 66(2): 403-423. |
48 | Sun GY, Simonyi A, Fritsche KL, et al. Docosahexaenoic acid (DHA): an essential nutrient and a nutraceutical for brain health and diseases[J]. Prostaglandins Leukot Essent Fatty Acids, 2018, 136: 3-13. |
49 | Braarud H, Markhus M, Skotheim S, et al. Maternal DHA status during pregnancy has a positive impact on infant problem solving: a Norwegian prospective observation study[J]. Nutrients, 2018, 10(5): 529. |
50 | Ogaz-González R, Mérida-Ortega Á, Torres-Sánchez L, et al. Maternal dietary intake of polyunsaturated fatty acids modifies association between prenatal DDT exposure and child neurodevelopment: a cohort study[J]. Environ Pollut, 2018, 238: 698-705. |
51 | Colombo J, Shaddy DJ, Gustafson K, et al. The Kansas University DHA Outcomes Study (KUDOS) clinical trial: long-term behavioral follow-up of the effects of prenatal DHA supplementation[J]. Am J Clin Nutr, 2019, 109(5): 1380-1392. |
52 | Jasani B, Simmer K, Patole SK, et al. Long chain polyunsaturated fatty acid supplementation in infants born at term[J]. Cochrane Database Syst Rev, 2017, 3(3): CD000376. |
53 | de Andrade Wobido K, de Sá Barreto da Cunha M, Miranda SS, et al. Non-specific effect of omega-3 fatty acid supplementation on autistic spectrum disorder: systematic review and meta-analysis[J]. Nutr Neurosci, 2021: 1-13. |
54 | Infante M, Sears B, Rizzo AM, et al. Omega-3 PUFAs and vitamin D co-supplementation as a safe-effective therapeutic approach for core symptoms of autism spectrum disorder: case report and literature review[J]. Nutr Neurosci, 2020, 23(10): 779-790. |
55 | Innes JK, Calder PC. Marine omega-3 (N-3) fatty acids for cardiovascular health: an update for 2020[J]. Int J Mol Sci, 2020, 21(4): 1362. |
56 | Bar-Haim Y, Marshall PJ, Fox NA. Developmental changes in heart period and high-frequency heart period variability from 4 months to 4 years of age[J]. Dev Psychobiol, 2000, 37(1): 44-56. |
57 | Vuholm S, Teisen MN, Mølgaard C, et al. Sleep and physical activity in healthy 8‒9-year-old children are affected by oily fish consumption in the FiSK Junior randomized trial[J]. Eur J Nutr, 2021, 60(6): 3095-3106. |
58 | Pivik RT, Dykman RA, Jing H, et al. Early infant diet and the omega 3 fatty acid DHA: effects on resting cardiovascular activity and behavioral development during the first half-year of life[J]. Dev Neuropsychol, 2009, 34(2): 139-158. |
59 | Vidakovic AJ, Gishti O, Steenweg-de Graaff J, et al. Higher maternal plasma n-3 PUFA and lower n-6 PUFA concentrations in pregnancy are associated with lower childhood systolic blood pressure[J]. J Nutr, 2015, 145(10): 2362-2368. |
60 | Seggers J, Kikkert HK, de Jong C, et al. Neonatal fatty acid status and cardiometabolic health at 9 years[J]. Early Hum Dev, 2016, 100: 55-59. |
61 | Lauritzen L, Eriksen SE, Hjorth MF, et al. Maternal fish oil supplementation during lactation is associated with reduced height at 13 years of age and higher blood pressure in boys only[J]. Br J Nutr, 2016, 116(12): 2082-2090. |
62 | Umesawa M, Yamagishi K, Iso H. Intake of fish and long-chain n-3 polyunsaturated fatty acids and risk of diseases in a Japanese population: a narrative review[J]. Eur J Clin Nutr, 2021, 75(6): 902-920. |
63 | Mensink-Bout SM, Voortman T, Dervishaj M, et al. Associations of plasma fatty acid patterns during pregnancy with respiratory and allergy outcomes at school age[J]. Nutrients, 2020, 12(10): 3057. |
64 | Nwaru BI, Erkkola M, Lumia M, et al. Maternal intake of fatty acids during pregnancy and allergies in the offspring[J]. Br J Nutr, 2012, 108(4): 720-732. |
65 | Innes JK, Calder PC. Omega-6 fatty acids and inflammation[J]. Prostaglandins Leukot Essent Fatty Acids, 2018, 132: 41-48. |
66 | Céspedes N, Tamayo A, Rodriguez MJ, et al. EPA plus DHA improves survival related to a decrease of injury after extended liver ischemia in Sprague-Dawley rats[J]. Ann Hepatol, 2020, 19(2): 172-178. |
67 | Hong F, Pan SJ, Guo Y, et al. PPARs as nuclear receptors for nutrient and energy metabolism[J]. Molecules, 2019, 24(14): 2545. |
68 | Korbecki J, Bobiński R, Dutka M. Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors[J]. Inflamm Res, 2019, 68(6): 443-458. |
69 | Taha A, Sharifpanah F, Wartenberg M, et al. Omega-3 and Omega-6 polyunsaturated fatty acids stimulate vascular differentiation of mouse embryonic stem cells[J]. J Cell Physiol, 2020, 235(10): 7094-7106. |
70 | Hu SQ, Bae M, Park YK, et al. N-3 PUFAs inhibit TGFβ1-induced profibrogenic gene expression by ameliorating the repression of PPARγ in hepatic stellate cells[J]. J Nutr Biochem, 2020, 85: 108452. |
71 | Wei WT, Hu MJ, Huang J, et al. Anti-obesity effects of DHA and EPA in high fat-induced insulin resistant mice[J]. Food Funct, 2021, 12(4): 1614-1625. |
72 | Zhu W, Zhao L, Li T, et al. Docosahexaenoic acid ameliorates traumatic brain injury involving JNK-mediated Tau phosphorylation signaling[J]. Neurosci Res, 2020, 157: 44-50. |
73 | Zhang H, Wang SS, Wang YQ, et al. DHA ameliorates MeHg‑induced PC12 cell apoptosis by inhibiting the ROS/JNK signaling pathway[J]. Mol Med Rep, 2021, 24(2): 558. |
74 | Eraky SM, Abo El-Magd NF. Omega-3 fatty acids protect against acetaminophen-induced hepatic and renal toxicity in rats through HO-1-Nrf2-BACH1 pathway[J]. Arch Biochem Biophys, 2020, 687: 108387. |
75 | Shan C, Wang R, Wang S, et al. Endogenous production of n-3 polyunsaturated fatty acids protects mice from carbon tetrachloride-induced liver fibrosis by regulating mTOR and Bcl-2/Bax signalling pathways[J]. Exp Physiol, 2021, 106(4): 983-993. |
76 | Ahn YJ, Lim JW, Kim H. Docosahexaenoic acid induces expression of NAD(P)H: quinone oxidoreductase and heme oxygenase-1 through activation of Nrf2 in cerulein-stimulated pancreatic acinar cells[J]. Antioxidants, 2020, 9(11): 1084. |
77 | Wang Q, Lin Y, Sheng X, et al. Arachidonic acid promotes intestinal regeneration by activating WNT signaling[J]. Stem Cell Reports, 2020, 15(2): 374-388. |
78 | Flitter BA, Fang X, Matthay MA, et al. The potential of lipid mediator networks as ocular surface therapeutics and biomarkers[J]. Ocul Surf, 2021, 19: 104-114. |
79 | Chen JJ, Chen J, Jiang ZX, et al. Resolvin D1 alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 signaling pathway[J]. J Biol Regul Homeost Agents, 2020, 34(5). DOI: 10.23812/20-392-A. |
80 | Liu GJ, Tao T, Zhang XS, et al. Resolvin D1 attenuates innate immune reactions in experimental subarachnoid hemorrhage rat model[J]. Mol Neurobiol, 2021, 58(5): 1963-1977. |
81 | Wang ML, Liu ML, Zhang JS, et al. Resolvin D1 protects against sepsis-induced cardiac injury in mice[J]. BioFactors, 2020, 46(5): 766-776. |
82 | Zhuo YZ, Zhang SK, Li CX, et al. Resolvin D1 promotes SIRT1 expression to counteract the activation of STAT3 and NF-κB in mice with septic-associated lung injury[J]. Inflammation, 2018, 41(5): 1762-1771. |
83 | Xia H, Wang F, Wang M, et al. Maresin1 ameliorates acute lung injury induced by sepsis through regulating Th17/Treg balance[J]. Life Sci, 2020, 254: 117773. |
84 | Kang S, Huang J, Lee BK, et al. Omega-3 polyunsaturated fatty acids protect human hepatoma cells from developing steatosis through FFA4 (GPR120)[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2018, 1863(2): 105-116. |
85 | Castilla-Madrigal R, Barrenetxe J, Moreno-Aliaga MJ, et al. EPA blocks TNF-α-induced inhibition of sugar uptake in Caco-2 cells via GPR120 and AMPK[J]. J Cell Physiol, 2018, 233(3): 2426-2433. |
86 | Fan G, Li Y, Chen J, et al. DHA/AA alleviates LPS-induced Kupffer cells pyroptosis via GPR120 interaction with NLRP3 to inhibit inflammasome complexes assembly[J]. Cell Death Dis, 2021, 12(1): 73. |
87 | Chen JL, Wang DP, Zong YB, et al. DHA protects hepatocytes from oxidative injury through GPR120/ERK-mediated mitophagy[J]. Int J Mol Sci, 2021, 22(11): 5675. |
[1] | 程 棣,林 琳,杜 瑞,陆洁莉. Omega-3脂肪酸与心血管疾病[J]. 上海交通大学学报(医学版), 2016, 36(08): 1231-. |
[2] | 周子超,孙梦君,束蓉. DHA对P.gingivalis LPS诱导人牙周膜成纤维细胞炎症反应的影响[J]. 上海交通大学学报(医学版), 2016, 36(05): 626-. |
[3] | 盛 虹. 鱼油在脓毒血症中的应用[J]. , 2010, 30(1): 46-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||