1 |
DAVID C J, MASSAGUÉ J. Contextual determinants of TGFβ action in development, immunity and cancer[J]. Nat Rev Mol Cell Biol, 2018, 19(7): 419-435.
|
2 |
JIANG J M, NG H H. TGFβ and SMADs talk to NANOG in human embryonic stem cells[J]. Cell Stem Cell, 2008, 3(2): 127-128.
|
3 |
OSNATO A, BROWN S, KRUEGER C, et al. TGFβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells[J]. Elife, 2021, 10: e67259.
|
4 |
XU R H, SAMPSELL-BARRON T L, GU F, et al. NANOG is a direct target of TGFβ/activin-mediated SMAD signaling in human ESCs[J]. Cell Stem Cell, 2008, 3(2): 196-206.
|
5 |
VALLIER L, MENDJAN S, BROWN S, et al. Activin/Nodal signalling maintains pluripotency by controlling Nanog expression[J]. Development, 2009, 136(8): 1339-1349.
|
6 |
WATABE T, MIYAZONO K. Roles of TGF-β family signaling in stem cell renewal and differentiation[J]. Cell Res, 2009, 19(1): 103-115.
|
7 |
TEO A K K, ARNOLD S J, TROTTER M W B, et al. Pluripotency factors regulate definitive endoderm specification through eomesodermin[J]. Genes Dev, 2011, 25(3): 238-250.
|
8 |
YANG J, JIANG W. The role of SMAD2/3 in human embryonic stem cells[J]. Front Cell Dev Biol, 2020, 8: 653.
|
9 |
ARAGÓN E, WANG Q, ZOU Y L, et al. Structural basis for distinct roles of SMAD2 and SMAD3 in FOXH1 pioneer-directed TGF-β signaling[J]. Genes Dev, 2019, 33(21/22): 1506-1524.
|
10 |
NOMURA M, LI E. Smad2 role in mesoderm formation, left-right patterning and craniofacial development[J]. Nature, 1998, 393(6687): 786-790.
|
11 |
WEINSTEIN M, YANG X, LI C, et al. Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2[J]. Proc Natl Acad Sci USA, 1998, 95(16): 9378-9383.
|
12 |
ASHCROFT G S, YANG X, GLICK A B, et al. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response[J]. Nat Cell Biol, 1999, 1(5): 260-266.
|
13 |
TREMBLAY K D, HOODLESS P A, BIKOFF E K, et al. Formation of the definitive endoderm in mouse is a Smad2-dependent process[J]. Development, 2000, 127(14): 3079-3090.
|
14 |
VINCENT S D, DUNN N R, HAYASHI S, et al. Cell fate decisions within the mouse organizer are governed by graded Nodal signals[J]. Genes Dev, 2003, 17(13): 1646-1662.
|
15 |
SAKAKI-YUMOTO M, LIU J M, RAMALHO-SANTOS M, et al. Smad2 is essential for maintenance of the human and mouse primed pluripotent stem cell state[J]. J Biol Chem, 2013, 288(25): 18546-18560.
|
16 |
LIU L, LIU X, REN X D, et al. Smad2 and Smad3 have differential sensitivity in relaying TGFβ signaling and inversely regulate early lineage specification[J]. Sci Rep, 2016, 6: 21602.
|
17 |
GONZÁLEZ F, ZHU Z R, SHI Z D, et al. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells[J]. Cell Stem Cell, 2014, 15(2): 215-226.
|
18 |
SANJANA N E, SHALEM O, ZHANG F. Improved vectors and genome-wide libraries for CRISPR screening[J]. Nat Methods, 2014, 11(8): 783-784.
|
19 |
WANG Q, ZOU Y L, NOWOTSCHIN S, et al. The p53 family coordinates Wnt and nodal inputs in mesendodermal differentiation of embryonic stem cells[J]. Cell Stem Cell, 2017, 20(1): 70-86.
|
20 |
D'AMOUR K A, AGULNICK A D, ELIAZER S, et al. Efficient differentiation of human embryonic stem cells to definitive endoderm[J]. Nat Biotechnol, 2005, 23(12): 1534-1541.
|
21 |
ZHU Z R, LI Q V, LEE K, et al. Genome editing of lineage determinants in human pluripotent stem cells reveals mechanisms of pancreatic development and diabetes[J]. Cell Stem Cell, 2016, 18(6): 755-768.
|
22 |
PENG G D, SUO S B, CHEN J, et al. Spatial transcriptome for the molecular annotation of lineage fates and cell identity in mid-gastrula mouse embryo[J]. Dev Cell, 2016, 36(6): 681-697.
|
23 |
PETERSEN M, PARDALI E, VAN DER HORST G, et al. Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis[J]. Oncogene, 2010, 29(9): 1351-1361.
|
24 |
MALHOTRA N, ROBERTSON E, KANG J. SMAD2 is essential for TGF β-mediated Th17 cell generation[J]. J Biol Chem, 2010, 285(38): 29044-29048.
|
25 |
DUNN N R, KOONCE C H, ANDERSON D C, et al. Mice exclusively expressing the short isoform of Smad2 develop normally and are viable and fertile[J]. Genes Dev, 2005, 19(1): 152-163.
|
26 |
KIM S W, YOON S J, CHUONG E, et al. Chromatin and transcriptional signatures for Nodal signaling during endoderm formation in hESCs[J]. Dev Biol, 2011, 357(2): 492-504.
|