1 |
ZHU W, CHEN Z, PAN Y, et al. Functionalization of hollow nanomaterials for catalytic applications: nanoreactor construction[J]. Adv Mater, 2019, 31(38): e1800426.
|
2 |
SU K, TAN L, LIU X M, et al. Rapid photo-sonotherapy for clinical treatment of bacterial infected bone implants by creating oxygen deficiency using sulfur doping[J]. ACS Nano, 2020, 14(2): 2077-2089.
|
3 |
ZHU X F, GONG Y C, LIU Y N, et al. Ru@CeO2 yolk shell nanozymes: oxygen supply in situ enhanced dual chemotherapy combined with photothermal therapy for orthotopic/subcutaneous colorectal cancer[J]. Biomaterials, 2020, 242: 119923.
|
4 |
ZHANG Y, HU H P, TANG W Q, et al. A multifunctional magnetic nanosystem based on "two strikes" effect for synergistic anticancer therapy in triple-negative breast cancer[J]. J Control Release, 2020, 322: 401-415.
|
5 |
SAHU A, KWON I, TAE G. Improving cancer therapy through the nanomaterials-assisted alleviation of hypoxia[J]. Biomaterials, 2020, 228: 119578.
|
6 |
FAN Y, LIU S G, YI Y, et al. Catalytic nanomaterials toward atomic levels for biomedical applications: from metal clusters to single-atom catalysts[J]. ACS Nano, 2021, 15(2): 2005-2037.
|
7 |
CHONG Y, LIU Q, GE C C. Advances in oxidase-mimicking nanozymes: classification, activity regulation and biomedical applications[J]. Nano Today, 2021, 37: 101076.
|
8 |
HUANG Y Y, REN J S, QU X G. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications[J]. Chem Rev, 2019, 119(6): 4357-4412.
|
9 |
WU J, WANG X Y, WANG Q, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (Ⅱ)[J]. Chem Soc Rev, 2019, 48(4): 1004-1076.
|
10 |
YANG Y, ZHANG C, LAI C, et al. BiOX (X = Cl, Br, I) photocatalytic nanomaterials: applications for fuels and environmental management[J]. Adv Colloid Interface Sci, 2018, 254: 76-93.
|
11 |
HU W H, ZHENG M B, XU B Y, et al. Design of hollow carbon-based materials derived from metal-organic frameworks for electrocatalysis and electrochemical energy storage[J]. J Mater Chem A, 2021, 9(7): 3880-3917.
|
12 |
YANG W, WANG L, METTENBRINK E M, et al. Nanoparticle toxicology[J]. Annu Rev Pharmacol Toxicol, 2021, 61: 269-289.
|
13 |
WANG H, WAN K, SHI X. Recent advances in nanozyme research[J]. Adv Mater, 2019, 31(45): e1805368.
|
14 |
HUANG L, CHEN J, GAN L, et al. Single-atom nanozymes[J]. Sci Adv, 2019, 5(5): eaav5490.
|
15 |
LI L L, CHANG X, LIN X Y, et al. Theoretical insights into single-atom catalysts[J]. Chem Soc Rev, 2020, 49(22): 8156-8178.
|
16 |
KAISER S K, CHEN Z P, FAUST AKL D, et al. Single-atom catalysts across the periodic table[J]. Chem Rev, 2020, 120(21): 11703-11809.
|
17 |
JI S F, JIANG B, HAO H G, et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme[J]. Nat Catal, 2021, 4(5): 407-417.
|
18 |
SULTAN S, TIWARI J N, SINGH A N, et al. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting[J]. Adv Energy Mater, 2019, 9(22): 1900624.
|
19 |
XIANG H J, FENG W, CHEN Y. Single-atom catalysts in catalytic biomedicine[J]. Adv Mater, 2020, 32(8): e1905994.
|
20 |
NIKOLOVA M P, CHAVALI M S. Metal oxide nanoparticles as biomedical materials[J]. Biomimetics (Basel), 2020, 5(2): 27.
|
21 |
MEADE E, SLATTERY M A, GARVEY M. Bacteriocins, potent antimicrobial peptides and the fight against multi drug resistant species: resistance is futile? [J]. Antibiotics (Basel), 2020, 9(1): 32.
|
22 |
TAN P, FU H Y, MA X. Design, optimization, and nanotechnology of antimicrobial peptides: from exploration to applications[J]. Nano Today, 2021, 39: 101229.
|
23 |
URUÉN C, CHOPO-ESCUIN G, TOMMASSEN J, et al. Biofilms as promoters of bacterial antibiotic resistance and tolerance[J]. Antibiotics (Basel), 2020, 10(1): 3.
|
24 |
HUO J J, JIA Q Y, HUANG H, et al. Emerging photothermal-derived multimodal synergistic therapy in combating bacterial infections[J]. Chem Soc Rev, 2021, 50(15): 8762-8789.
|
25 |
CHEESEMAN S, CHRISTOFFERSON A J, KARIUKI R, et al. Antimicrobial metal nanomaterials: from passive to stimuli-activated applications[J]. Adv Sci (Weinh), 2020, 7(10): 1902913.
|
26 |
XIN Q, SHAH H, NAWAZ A, et al. Antibacterial carbon-based nanomaterials[J]. Adv Mater, 2019, 31(45): e1804838.
|
27 |
XU B L, WANG H, WANG W W, et al. A single-atom nanozyme for wound disinfection applications[J]. Angew Chem Int Ed Engl, 2019, 58(15): 4911-4916.
|
28 |
HUO M F, WANG L Y, ZHANG H X, et al. Construction of single-iron-atom nanocatalysts for highly efficient catalytic antibiotics[J]. Small, 2019, 15(31): e1901834.
|
29 |
WANG X W, SHI Q Q, ZHA Z B, et al. Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy[J]. Bioact Mater, 2021, 6(12): 4389-4401.
|
30 |
YANG B W, CHEN Y, SHI J L. Nanocatalytic medicine[J]. Adv Mater, 2019, 31(39): 1901778.
|
31 |
WANG L Y, HUO M F, CHEN Y, et al. Tumor microenvironment-enabled nanotherapy[J]. Adv Healthc Mater, 2018, 7(8): e1701156.
|
32 |
RANJI-BURACHALOO H, GURR P A, DUNSTAN D E, et al. Cancer treatment through nanoparticle-facilitated Fenton reaction[J]. ACS Nano, 2018, 12(12): 11819-11837.
|
33 |
QI C, HE J, FU L H, et al. Tumor-specific activatable nanocarriers with gas-generation and signal amplification capabilities for tumor theranostics[J]. ACS Nano, 2021, 15(1): 1627-1639.
|
34 |
HAN D L, HAN Y J, LI J, et al. Enhanced photocatalytic activity and photothermal effects of cu-doped metal-organic frameworks for rapid treatment of bacteria-infected wounds[J]. Appl Catal B Environ, 2020, 261: 118248.
|
35 |
ZHANG N Q, ZHANG X X, KANG Y K, et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction[J]. Angew Chem Int Ed Engl, 2021, 60(24): 13388-13393.
|
36 |
LU X Y, GAO S S, LIN H, et al. Bioinspired copper single-atom catalysts for tumor parallel catalytic therapy[J]. Adv Mater, 2020, 32(36): e2002246.
|
37 |
ZAKHARCHENKO A, GUZ N, LARADJI A M, et al. Magnetic field remotely controlled selective biocatalysis[J]. Nat Catal, 2018, 1(1): 73-81.
|
38 |
FENG L, GAI S, DAI Y, et al. Controllable generation of free radicals from multifunctional heat-responsive nanoplatform for targeted cancer therapy [J]. Chem Mater, 2018, 30(2): 526-539.
|
39 |
JIANG R M, DAI J, DONG X Q, et al. Improving image-guided surgical and immunological tumor treatment efficacy by photothermal and photodynamic therapies based on a multifunctional NIR AIEgen[J]. Adv Mater, 2021, 33(22): e2101158.
|
40 |
DENG X Y, SHAO Z W, ZHAO Y L. Solutions to the drawbacks of photothermal and photodynamic cancer therapy[J]. Adv Sci (Weinh), 2021, 8(3): 2002504.
|
41 |
CHEN J M, FAN T J, XIE Z J, et al. Advances in nanomaterials for photodynamic therapy applications: status and challenges[J]. Biomaterials, 2020, 237: 119827.
|
42 |
LI X S, LOVELL J F, YOON J, et al. Clinical development and potential of photothermal and photodynamic therapies for cancer[J]. Nat Rev Clin Oncol, 2020, 17(11): 657-674.
|
43 |
WANG D D, WU H H, PHUA S Z F, et al. Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor[J]. Nat Commun, 2020, 11(1): 357.
|
44 |
WANG L, QU X Z, ZHAO Y X, et al. Exploiting single atom iron centers in a porphyrin-like MOF for efficient cancer phototherapy[J]. ACS Appl Mater Interfaces, 2019, 11(38): 35228-35237.
|
45 |
LIANG S, DENG X R, MA P A, et al. Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy[J]. Adv Mater, 2020, 32(47): e2003214.
|
46 |
PAN X T, BAI L X, WANG H, et al. Metal-organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy[J]. Adv Mater, 2018, 30(23): e1800180.
|
47 |
CHENG X T, XU H D, RAN H H, et al. Glutathione-depleting nanomedicines for synergistic cancer therapy[J]. ACS Nano, 2021, 15(5): 8039-8068.
|
48 |
WANG M, CHANG M Y, CHEN Q, et al. Au2Pt-PEG-Ce6 nanoformulation with dual nanozyme activities for synergistic chemodynamic therapy/phototherapy[J]. Biomaterials, 2020, 252: 120093.
|
49 |
HUO M F, WANG L Y, WANG Y W, et al. Nanocatalytic tumor therapy by single-atom catalysts[J]. ACS Nano, 2019, 13(2): 2643-2653.
|
50 |
ZHU Y, WANG W Y, CHENG J J, et al. Stimuli-responsive manganese single-atom nanozyme for tumor therapy via integrated cascade reactions[J]. Angew Chem Int Ed Engl, 2021, 60(17): 9480-9488.
|
51 |
DU F X, LIU L C, WU Z H, et al. Pd-single-atom coordinated biocatalysts for chem-/ sono-/ photo-trimodal tumor therapies[J]. Adv Mater, 2021, 33(29): e2101095.
|
52 |
LI Q, LIU Y, DAI X L, et al. Nanozymes regulate redox homeostasis in ROS-related inflammation[J]. Front Chem, 2021, 9: 740607.
|
53 |
YU H, JIN F Y, LIU D, et al. ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury[J]. Theranostics, 2020, 10(5): 2342-2357.
|
54 |
ZHENG L M, YU P J, ZHANG Y B, et al. Evaluating the bio-application of biomacromolecule of lignin-carbohydrate complexes (LCC) from wheat straw in bone metabolism via ROS scavenging[J]. Int J Biol Macromol, 2021, 176: 13-25.
|
55 |
SAUNDERS R M, BIDDLE M, AMRANI Y, et al. Stressed out - The role of oxidative stress in airway smooth muscle dysfunction in asthma and COPD[J]. Free Radic Biol Med, 2022, 185: 97-119.
|
56 |
LIU T F, XIAO B W, XIANG F, et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases[J]. Nat Commun, 2020, 11(1): 2788.
|
57 |
HUANG X, HE D, PAN Z, et al. Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation[J]. Mater Today Bio, 2021, 11: 100124.
|
58 |
MA W J, MAO J J, YANG X T, et al. A single-atom Fe-N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection[J]. Chem Commun (Camb), 2018, 55(2): 159-162.
|
59 |
YAN R J, SUN S, YANG J, et al. Nanozyme-based bandage with single-atom catalysis for brain trauma[J]. ACS Nano, 2019, 13(10): 11552-11560.
|
60 |
BHALLA N, PAN Y W, YANG Z G, et al. Opportunities and challenges for biosensors and nanoscale analytical tools for pandemics: covid-19[J]. ACS Nano, 2020, 14(7): 7783-7807.
|
61 |
ZHANG S Y, WONG C L, ZENG S W, et al. Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective[J]. Nanophotonics, 2020, 10(1): 259-293.
|
62 |
ZHOU M, JIANG Y, WANG G, et al. Single-atom Ni-N4 provides a robust cellular NO sensor[J]. Nat Commun, 2020, 11(1): 3188.
|
63 |
JING W J, CUI X K, KONG F B, et al. Fe-N/C single-atom nanozyme-based colorimetric sensor array for discriminating multiple biological antioxidants[J]. Analyst, 2021, 146(1): 207-212.
|
64 |
YAMADA T, KOJIMA T, ABE E, et al. Probing single Pt atoms in complex intermetallic Al13Fe4[J]. J Am Chem Soc, 2018, 140(11): 3838-3841.
|
65 |
SHI J J, KANTOFF P W, WOOSTER R, et al. Cancer nanomedicine: progress, challenges and opportunities[J]. Nat Rev Cancer, 2017, 17(1): 20-37.
|