上海交通大学学报(医学版) ›› 2021, Vol. 41 ›› Issue (10): 1371-1377.doi: 10.3969/j.issn.1674-8115.2021.10.016
出版日期:
2021-10-28
发布日期:
2021-08-13
通讯作者:
赵爱民
E-mail:bwx_1209@126.com;zamzkh0526@126.com
作者简介:
柏文心(1995—),男,博士生;电子信箱:bwx_1209@126.com。
基金资助:
Online:
2021-10-28
Published:
2021-08-13
Contact:
Ai-min ZHAO
E-mail:bwx_1209@126.com;zamzkh0526@126.com
Supported by:
摘要:
复发性流产(recurrent spontaneous abortion,RSA)是妇产科最常见的妊娠并发症。RSA的病因复杂多样,除了已知的自身免疫异常、易栓症、内分泌因素、女性生殖道解剖异常、夫妻染色体异常、胚胎染色体或基因异常等因素外,仍然有40%~50%的患者流产原因不明,即为不明原因复发性流产(unexplained RSA,URSA)。由于病因及发病机制不明,临床治疗极其困难。近年来,随着生殖免疫学研究的不断进展,越来越多的研究证据提示URSA的发生和母胎免疫机制失衡有关,这为制定针对URSA的治疗策略带来了希望。该文就母胎界面和母胎免疫耐受的概念、母胎免疫耐受形成和失衡的机制,以及URSA的免疫发病机制的研究进展作一综述。
中图分类号:
柏文心, 赵爱民. 不明原因复发性流产的免疫发病机制研究进展[J]. 上海交通大学学报(医学版), 2021, 41(10): 1371-1377.
Wen-xin BAI, Ai-min ZHAO. Research progress in immune pathogenesis of unexplained recurrent spontaneous abortion[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(10): 1371-1377.
1 | Rai R, Regan L. Recurrent miscarriage[J]. Lancet, 2006, 368(9535): 601-611. |
2 | Youssef A, Vermeulen N, EELO Lashley, et al. Comparison and appraisal of (inter)national recurrent pregnancy loss guidelines[J]. Reprod Biomed Online, 2019, 39(3): 497-503. |
3 | Wu MJ, Liu P, Cheng LC. Galectin-1 reduction and changes in T regulatory cells may play crucial roles in patients with unexplained recurrent spontaneous abortion[J]. Int J Clin Exp Pathol, 2015, 8(2): 1973-1978. |
4 | Christiansen OB, Nybo Andersen AM, Bosch E, et al. Evidence-based investigations and treatments of recurrent pregnancy loss[J]. Fertil Steril, 2005, 83(4): 821-839. |
5 | Yang FL, Zheng QL, Jin LP. Dynamic function and composition changes of immune cells during normal and pathological pregnancy at the maternal-fetal interface[J]. Front Immunol, 2019, 10: 2317. |
6 | Krieg S, Westphal L. Immune function and recurrent pregnancy loss[J]. Semin Reprod Med, 2015, 33(4): 305-312. |
7 | Ander SE, Diamond MS, Coyne CB. Immune responses at the maternal-fetal interface[J]. Sci Immunol, 2019, 4(31): eaat6114. |
8 | Zhao AM, Xu HJ, Kang XM, et al. New insights into myeloid-derived suppressor cells and their roles in feto-maternal immune cross-talk[J]. J Reprod Immunol, 2016, 113: 35-41. |
9 | O′Brien KL, Finlay DK. Immunometabolism and natural killer cell responses[J]. Nat Rev Immunol, 2019, 19(5): 282-290. |
10 | Arnon TI, Markel G, Mandelboim O. Tumor and viral recognition by natural killer cells receptors[J]. Semin Cancer Biol, 2006, 16(5): 348-358. |
11 | Kalkunte SS, Mselle TF, Norris WE, et al. Vascular endothelial growth factor C facilitates immune tolerance and endovascular activity of human uterine NK cells at the maternal-fetal interface[J]. J Immunol, 2009, 182(7): 4085-4092. |
12 | Koopman LA, Kopcow HD, Rybalov B, et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential[J]. J Exp Med, 2003, 198(8): 1201-1212. |
13 | Helige C, Ahammer H, Moser G, et al. Distribution of decidual natural killer cells and macrophages in the neighbourhood of the trophoblast invasion front: a quantitative evaluation[J]. Hum Reprod, 2014, 29(1): 8-17. |
14 | Liu S, Diao LH, Huang CY, et al. The role of decidual immune cells on human pregnancy[J]. J Reprod Immunol, 2017, 124: 44-53. |
15 | Moffett A, Chazara O, Colucci F. Maternal allo-recognition of the fetus[J]. Fertil Steril, 2017, 107(6): 1269-1272. |
16 | Kennedy PR, Chazara O, Gardner L, et al. Activating KIR2DS4 is expressed by uterine NK cells and contributes to successful pregnancy[J]. J Immunol, 2016, 197(11): 4292-4300. |
17 | Lachapelle MH, Miron P, Hemmings R, et al. Endometrial T, B, and NK cells in patients with recurrent spontaneous abortion. Altered profile and pregnancy outcome[J]. J Immunol, 1996, 156(10): 4027-4034. |
18 | Fukui A, Funamizu A, Fukuhara R, et al. Expression of natural cytotoxicity receptors and cytokine production on endometrial natural killer cells in women with recurrent pregnancy loss or implantation failure, and the expression of natural cytotoxicity receptors on peripheral blood natural killer cells in pregnant women with a history of recurrent pregnancy loss[J]. J Obstet Gynaecol Res, 2017, 43(11): 1678-1686. |
19 | PrabhuDas M, Bonney E, Caron K, et al. Immune mechanisms at the maternal-fetal interface: perspectives and challenges[J]. Nat Immunol, 2015, 16(4): 328-334. |
20 | El-Azzamy H, Dambaeva SV, Katukurundage D, et al. Dysregulated uterine natural killer cells and vascular remodeling in women with recurrent pregnancy losses[J]. Am J Reprod Immunol, 2018, 80(4): e13024. |
21 | Kamoi M, Fukui A, Kwak-Kim J, et al. NK22 cells in the uterine mid-secretory endometrium and peripheral blood of women with recurrent pregnancy loss and unexplained infertility[J]. Am J Reprod Immunol, 2015, 73(6): 557-567. |
22 | O′Hern Perfetto C, Fan XJ, Dahl S, et al. Expression of interleukin-22 in decidua of patients with early pregnancy and unexplained recurrent pregnancy loss[J]. J Assist Reprod Genet, 2015, 32(6): 977-984. |
23 | Abrahams VM, Kim YM, Straszewski SL, et al. Macrophages and apoptotic cell clearance during pregnancy[J]. Am J Reprod Immunol, 2004, 51(4): 275-282. |
24 | Faas MM, de Vos P. Uterine NK cells and macrophages in pregnancy[J]. Placenta, 2017, 56: 44-52. |
25 | Zhang YH, Ma LN, Hu XH, et al. The role of the PD-1/PD-L1 axis in macrophage differentiation and function during pregnancy[J]. Hum Reprod, 2019, 34(1): 25-36. |
26 | Zhu XX, Liu HP, Zhang Z, et al. MiR-103 protects from recurrent spontaneous abortion via inhibiting STAT1 mediated M1 macrophage polarization[J]. Int J Biol Sci, 2020, 16(12): 2248-2264. |
27 | Tsao FY, Wu MY, Chang YL, et al. M1 macrophages decrease in the deciduae from normal pregnancies but not from spontaneous abortions or unexplained recurrent spontaneous abortions[J]. J Formos Med Assoc, 2018, 117(3): 204-211. |
28 | Wang WJ, Hao CF, Lin QD. Dysregulation of macrophage activation by decidual regulatory T cells in unexplained recurrent miscarriage patients[J]. J Reprod Immunol, 2011, 92(1/2): 97-102. |
29 | Ding JL, Yin TL, Yan NN, et al. FasL on decidual macrophages mediates trophoblast apoptosis: a potential cause of recurrent miscarriage[J]. Int J Mol Med, 2019, 43(6): 2376-2386. |
30 | Ning F, Liu HS, Lash GE. The role of decidual macrophages during normal and pathological pregnancy[J]. Am J Reprod Immunol, 2016, 75(3): 298-309. |
31 | Arck PC, Hecher K. Fetomaternal immune cross-talk and its consequences for maternal and offspring′s health[J]. Nat Med, 2013, 19(5): 548-556. |
32 | Robertson SA, Care AS, Moldenhauer LM. Regulatory T cells in embryo implantation and the immune response to pregnancy[J]. J Clin Invest, 2018, 128(10): 4224-4235. |
33 | Tagliani E, Erlebacher A. Dendritic cell function at the maternal-fetal interface[J]. Expert Rev Clin Immunol, 2011, 7(5): 593-602. |
34 | Askelund K, Liddell HS, Zanderigo AM, et al. CD83+ dendritic cells in the decidua of women with recurrent miscarriage and normal pregnancy[J]. Placenta, 2004, 25(2/3): 140-145. |
35 | Huang CY, Zhang HZ, Chen X, et al. Association of peripheral blood dendritic cells with recurrent pregnancy loss: a case-controlled study[J]. Am J Reprod Immunol, 2016, 76(4): 326-332. |
36 | Eskandarian M, Moazzeni SM. Uterine dendritic cells modulation by mesenchymal stem cells provides a protective microenvironment at the feto-maternal interface: improved pregnancy outcome in abortion-prone mice[J]. Cell J, 2019, 21(3): 274-280. |
37 | Sharma A, Rudra D. Emerging functions of regulatory T cells in tissue homeostasis[J]. Front Immunol, 2018, 9: 883. |
38 | Shima T, Sasaki Y, Itoh M, et al. Regulatory T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice[J]. J Reproductive Immunol, 2010, 85(2): 121-129. |
39 | Fallarino F, Grohmann U, Hwang KW, et al. Modulation of tryptophan catabolism by regulatory T cells[J]. Nat Immunol, 2003, 4(12): 1206-1212. |
40 | Bansal AS. Joining the immunological dots in recurrent miscarriage[J]. Am J Reprod Immunol, 2010, 64(5): 307-315. |
41 | Schumacher A, Wafula PO, Teles A, et al. Blockage of heme oxygenase-1 abrogates the protective effect of regulatory T cells on murine pregnancy and promotes the maturation of dendritic cells[J]. PLoS One, 2012, 7(8): e42301. |
42 | Zhang XX, Kang XM, Zhao AM. Regulation of CD4⁺FOXP3⁺ T cells by CCL20/CCR6 axis in early unexplained recurrent miscarriage patients[J]. Genet Mol Res, 2015, 14(3): 9145-9154. |
43 | Rahmati M, Petitbarat M, Dubanchet S, et al. Granulocyte-colony stimulating factor related pathways tested on an endometrial ex-vivo model[J]. PLoS One, 2014, 9(9): e102286. |
44 | Qian JF, Zhang N, Lin J, et al. Distinct pattern of Th17/Treg cells in pregnant women with a history of unexplained recurrent spontaneous abortion[J]. Biosci Trends, 2018, 12(2): 157-167. |
45 | Zidan HE, Abdul-Maksoud RS, Mowafy HE, et al. The association of IL-33 and Foxp3 gene polymorphisms with recurrent pregnancy loss in Egyptian women[J]. Cytokine, 2018, 108: 115-119. |
46 | Liu B, Wu HM, Huang QY, et al. Phosphorylated STAT3 inhibited the proliferation and suppression of decidual Treg cells in unexplained recurrent spontaneous abortion[J]. Int Immunopharmacol, 2020, 82: 106337. |
47 | Sadlon T, Brown CY, Bandara V, et al. Unravelling the molecular basis for regulatory T-cell plasticity and loss of function in disease[J]. Clin Transl Immunology, 2018, 7(2): e1011. |
48 | Mitchell RE, Hassan M, Burton BR, et al. IL-4 enhances IL-10 production in Th1 cells: implications for Th1 and Th2 regulation[J]. Sci Rep, 2017, 7(1): 11315. |
49 | Liu J, Dong P, Wang SJ, et al. Natural killer, natural killer T, helper and cytotoxic T cells in the decidua from recurrent spontaneous abortion with normal and abnormal chromosome karyotypes[J]. Biochem Biophys Res Commun, 2019, 508(2): 354-360. |
50 | Zhang YH, Tian M, Tang MX, et al. Recent insight into the role of the PD-1/PD-L1 pathway in feto-maternal tolerance and pregnancy[J]. Am J Reprod Immunol, 2015, 74(3): 201-208. |
51 | Wang WJ, Salazar Garcia MD, Deutsch G, et al. PD-1 and PD-L1 expression on T-cell subsets in women with unexplained recurrent pregnancy losses[J]. Am J Reprod Immunol, 2020, 83(5): e13230. |
52 | Travis OK, White D, Pierce WA, et al. Chronic infusion of interleukin-17 promotes hypertension, activation of cytolytic natural killer cells, and vascular dysfunction in pregnant rats[J]. Physiol Rep, 2019, 7(7): e14038. |
53 | LéDée N. Endometrial immune profiling: an emerging paradigm for reproductive disorders[M]//Endometrial Gene Expression. Cham: Springer International Publishing, 2019: 75-89. |
54 | Wu L, Li J, Xu HL, et al. IL-7/IL-7R signaling pathway might play a role in recurrent pregnancy losses by increasing inflammatory Th17 cells and decreasing Treg cells[J]. Am J Reprod Immunol, 2016, 76(6): 454-464. |
55 | Yang Y, Cheng LY, Deng XH, et al. Expression of GRIM-19 in unexplained recurrent spontaneous abortion and possible pathogenesis[J]. Mol Hum Reprod, 2018, 24(7): 366-374. |
56 | Lu MD, Ma FY, Xiao JP, et al. NLRP3 inflammasome as the potential target mechanism and therapy in recurrent spontaneous abortions[J]. Mol Med Rep, 2019, 19(3): 1935-1941. |
57 | Sha J, Liu FM, Zhai JF, et al. Alteration of Th17 and Foxp3+ regulatory T cells in patients with unexplained recurrent spontaneous abortion before and after the therapy of hCG combined with immunoglobulin[J]. Exp Ther Med, 2017, 14(2): 1114-1118. |
58 | Gabrilovich DI. Myeloid-derived suppressor cells[J]. Cancer Immunol Res, 2017, 5(1):3-8. |
59 | Arocena AR, Onofrio LI, Pellegrini AV, et al. Myeloid-derived suppressor cells are key players in the resolution of inflammation during a model of acute infection[J]. Eur J Immunol, 2014, 44(1): 184-194. |
60 | Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age[J]. Nat Immunol, 2018, 19(2): 108-119. |
61 | Ren JB, Zeng WH, Tian FJ, et al. Myeloid-derived suppressor cells depletion may cause pregnancy loss via upregulating the cytotoxicity of decidual natural killer cells[J]. Am J Reprod Immunol, 2019, 81(4): e13099. |
62 | Köstlin N, Ostermeir AL, Spring B, et al. HLA-G promotes myeloid-derived suppressor cell accumulation and suppressive activity during human pregnancy through engagement of the receptor ILT4[J]. Eur J Immunol, 2017, 47(2): 374-384. |
63 | Kang XM, Zhang XX, Liu ZL, et al. Granulocytic myeloid-derived suppressor cells maintain feto-maternal tolerance by inducing Foxp3 expression in CD4+ CD25- T cells by activation of the TGF‑β/β‑catenin pathway[J]. Mol Hum Reprod, 2016, 22(7): 499-511. |
64 | Kang XM, Zhang XX, Liu ZL, et al. CXCR2-mediated granulocytic myeloid-derived suppressor cells′ functional characterization and their role in maternal fetal interface[J]. DNA Cell Biol, 2016, 35(7): 358-365. |
65 | Li CC, Chen C, Kang XM, et al. Decidua-derived granulocyte macrophage colony-stimulating factor induces polymorphonuclear myeloid-derived suppressor cells from circulating CD15+ neutrophils[J]. Hum Reprod, 2020, 35(12): 2677-2691. |
66 | Li CC, Zhang XX, Kang XM, et al. Upregulated TRAIL and reduced DcR2 mediate apoptosis of decidual PMN-MDSC in unexplained recurrent pregnancy loss[J]. Front Immunol, 2020, 11: 1345. |
67 | Gleicher N, Kushnir VA, Barad DH. Redirecting reproductive immunology research toward pregnancy as a period of temporary immune tolerance[J]. J Assist Reprod Genet, 2017, 34(4): 425-430. |
68 | Zhu H, Hou CC, Luo LF, et al. Endometrial stromal cells and decidualized stromal cells: origins, transformation and functions[J]. Gene, 2014, 551(1): 1-14. |
69 | Carlino C, Stabile H, Morrone S, et al. Recruitment of circulating NK cells through decidual tissues: a possible mechanism controlling NK cell accumulation in the uterus during early pregnancy[J]. Blood, 2008, 111(6): 3108-3115. |
70 | Engert S, Rieger L, Kapp M, et al. Profiling chemokines, cytokines and growth factors in human early pregnancy decidua by protein array[J]. Am J Reprod Immunol, 2007, 58(2): 129-137. |
71 | Huang XM, Cai YN, Ding M, et al. Human chorionic gonadotropin promotes recruitment of regulatory T cells in endometrium by inducing chemokine CCL2[J]. J Reprod Immunol, 2020, 137: 102856. |
72 | Segerer SE, Rieger L, Kapp M, et al. MIC-1 (a multifunctional modulator of dendritic cell phenotype and function) is produced by decidual stromal cells and trophoblasts[J]. Hum Reprod, 2012, 27(1): 200-209. |
73 | Lee CL, Lam KK, Vijayan M, et al. The pleiotropic effect of glycodelin: a in early pregnancy[J]. Am J Reprod Immunol, 2016, 75(3): 290-297. |
74 | Liu J, Hao SN, Chen X, et al. Human placental trophoblast cells contribute to maternal-fetal tolerance through expressing IL-35 and mediating iTR35 conversion[J]. Nat Commun, 2019, 10(1): 4601. |
75 | Lu H, Jin LP, Huang HL, et al. Trophoblast-derived CXCL12 promotes CD56bright CD82- CD29+ NK cell enrichment in the decidua[J]. Am J Reprod Immunol, 2020, 83(2): e13203. |
76 | Wang BQ, Xu TH, Li Y, et al. Trophoblast H2S maintains early pregnancy via regulating maternal-fetal interface immune hemostasis[J]. J Clin Endocrinol Metab, 2020, 105(12): e4275-e4289. |
[1] | 陈超, 李聪聪, 郭枫, 王巧红, 赵爱民. 泌乳素在不明原因复发性流产和正常妊娠早期中的差异性表达[J]. 上海交通大学学报(医学版), 2021, 41(4): 489-496. |
[2] | 熊苗,徐亮,李莉,刘阳,周芳芳,王军,朱洁萍 . 新型免疫抑制剂 FTY720 通过阻断 S1P 信号通路诱导母胎免疫 耐受的实验研究[J]. 上海交通大学学报(医学版), 2017, 37(10): 1332-. |
[3] | 李维宏,牟晓玲. 脂联素对不明原因复发性流产患者外周血Th17/Treg细胞分群及细胞因子水平的影响[J]. 上海交通大学学报(医学版), 2015, 35(7): 1004-. |
[4] | 董 倩, 李卫平. Th17细胞和调节性T细胞与母胎免疫耐受的关系[J]. , 2012, 32(11): 1525-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||