1 |
Murphy SV, Atala A. 3D bioprinting of tissues and organs [J]. Nat Biotechnol, 2014, 32(8): 773-785.
|
2 |
Zhang YS, Yue K, Aleman J, et al. 3D bioprinting for tissue and organ fabrication[J]. Ann Biomed Eng, 2017, 45(1): 148-163.
|
3 |
Ozbolat IT. Bioprinting scale-up tissue and organ constructs for transplantation[J]. Trends Biotechnol, 2015, 33(7): 395-400.
|
4 |
Campbell PG, Weiss LE. Tissue engineering with the aid of inkjet printers[J]. Expert Opin Biol Ther, 2007, 7(8): 1123-1127.
|
5 |
Ashammakhi N, Ahadian S, Pountos I, et al. In situ three-dimensional printing for reparative and regenerative therapy[J]. Biomed Microdevices, 2019, 21(2): 42.
|
6 |
Wang MY, He JK, Liu YX, et al. The trend towards in vivo bioprinting[J]. Int J Bioprinting, 2015, 1(1): 15-26.
|
7 |
Singh S, Choudhury D, Yu F, et al. In situ-bioprinting:bioprinting from benchside to bedside?[J]. Acta Biomater, 2020, 101: 14-25.
|
8 |
Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future[J]. Biomaterials, 2016, 102: 20-42.
|
9 |
Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting[J]. Biomaterials, 2016, 76: 321-343.
|
10 |
Sorkio A, Koch L, Koivusalo L, et al. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks[J]. Biomaterials, 2018, 171: 57-71.
|
11 |
Keriquel V, Guillemot F, Arnault I, et al. In vivo bioprinting for computer-and robotic-assisted medical intervention: preliminary study in mice[J]. Biofabrication, 2010, 2(1): 014101.
|
12 |
Cohen DL, Lipton JI, Bonassar LJ, et al. Additive manufacturing for in situ repair of osteochondral defects[J]. Biofabrication, 2010, 2(3): 035004.
|
13 |
Keriquel V, Oliveira H, Rémy M, et al. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications[J]. Sci Rep, 2017, 7(1): 1778.
|
14 |
Albanna M, Binder KW, Murphy SV, et al. In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds[J]. Sci Rep, 2019, 9(1): 1856.
|
15 |
Lipskas J, Deep K, Yao W. Robotic-assisted 3D bio-printing for repairing bone and cartilage defects through a minimally invasive approach[J]. Sci Rep, 2019, 9(1): 3746.
|
16 |
Ding HZ, Chang RC. Simulating image-guided in situ bioprinting of a skin graft onto a phantom burn wound bed[J]. Addit Manuf, 2018, 22: 708-719.
|
17 |
O'Connell CD, Di Bella C, Thompson F, et al. Development of the Biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site[J]. Biofabrication, 2016, 8(1): 015019.
|
18 |
Murdock MH, Badylak SF. Biomaterials-based in situ tissue engineering[J]. Curr Opin Biomed Eng, 2017, 1: 4-7.
|
19 |
Hakimi N, Cheng R, Leng L, et al. Handheld skin printer: in situ formation of planar biomaterials and tissues[J]. Lab Chip, 2018, 18(10): 1440-1451.
|
20 |
Binder KW, Zhao WX, Aboushwareb T, et al. In situ bioprinting of the skin for burns[J]. J Am Coll Surg, 2010, 211(3): S76.
|
21 |
Sofokleous P, Stride E, Bonfield W, et al. Design, construction and performance of a portable handheld electrohydrodynamic multi-needle spray gun for biomedical applications[J]. Mater Sci Eng C Mater Biol Appl, 2013, 33(1): 213-223.
|
22 |
Makris EA, Gomoll AH, Malizos KN, et al. Repair and tissue engineering techniques for articular cartilage[J]. Nat Rev Rheumatol, 2015, 11(1): 21-34.
|
23 |
Duchi S, Onofrillo C, O'Connell CD, et al. Handheld co-axial bioprinting: application to in situ surgical cartilage repair[J]. Sci Rep, 2017, 7(1): 5837.
|
24 |
Di Bella C, Duchi S, O'Connell CD, et al. In situ handheld three-dimensional bioprinting for cartilage regeneration[J]. J Tissue Eng Regen Med, 2018, 12(3): 611-621.
|
25 |
Duchi S, Onofrillo C, O'Connell CD, et al. Innovative cartilage regeneration for in situ co-axial 3D bioprinting [J]. Tissue Engineering Part A, 2017, 23: S22.
|
26 |
Ibrahim A. 3D bioprinting bone[M]//Thomas DJ.3D bioprinting for reconstructive surgery.Duxford: Elsevier, 2018: 245-275.
|
27 |
Kérourédan O, Hakobyan D, Rémy M, et al. In situ prevascularization designed by laser-assisted bioprinting: effect on bone regeneration[J]. Biofabrication, 2019, 11(4): 045002.
|
28 |
Li L, Yu F, Shi JP, et al. In situ repair of bone and cartilage defects using 3D scanning and 3D printing[J]. Sci Rep, 2017, 7(1): 9416.
|
29 |
Jin C, Zhang J, Li XK, et al. Injectable 3-D fabrication of medical electronics at the target biological tissues[J]. Sci Rep, 2013, 3: 3442.
|
30 |
Sun XY, Yuan B, Rao W, et al. Amorphous liquid metal electrodes enabled conformable electrochemical therapy of tumors[J]. Biomaterials, 2017, 146: 156-167.
|
31 |
Li C, Faulkner-Jones A, Dun AR, et al. Rapid formation of a supramolecular polypeptide-DNA hydrogel for in situ three-dimensional multilayer bioprinting[J]. Angew Chem Int Ed Engl, 2015, 54(13): 3957-3961.
|
32 |
Li YC, Zhang YS, Akpek A, et al. 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials[J]. Biofabrication, 2016, 9(1): 012001.
|
33 |
Ashammakhi N, Ahadian S, Fan ZJ, et al. Advances and future perspectives in 4D bioprinting[J]. Biotechnol J, 2018, 13(12): e1800148.
|
34 |
Kahn JS, Hu YW, Willner I. Stimuli-responsive DNA-based hydrogels: from basic principles to applications[J]. Acc Chem Res, 2017, 50(4): 680-690.
|
35 |
Ozbolat IT, Moncal KK, Gudapati H. Evaluation of bioprinter technologies[J]. Addit Manuf, 2017, 13: 179-200.
|
36 |
Zhu ZJ, Guo SZ, Hirdler T, et al. 3D printing: 3D printed functional and biological materials on moving freeform surfaces (adv. Mater. 23/2018)[J]. Adv Mater, 2018, 30(23): 1870165.
|
37 |
Evans CH. Gene delivery to bone[J]. Adv Drug Deliv Rev, 2012, 64(12): 1331-1340.
|