1 |
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821.
|
2 |
Makarova KS, Haft DH, Barrangou R, et al. Evolution and classification of the CRISPR-Cas systems[J]. Nat Rev Microbiol, 2011, 9(6): 467-477.
|
3 |
Makarova KS, Grishin NV, Shabalina SA, et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action[J]. Biol Direct, 2006, 1(1): 1-26.
|
4 |
Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ[J]. Nature, 2011, 471(7340): 602-607.
|
5 |
Davis AJ,Chen DJ. DNA double strand break repair via non-homologous end-joining[J]. Transl Cancer Res, 2013, 2(3):130-143.
|
6 |
Butt H, Eid A, Ali Z, et al. Efficient CRISPR/Cas9-mediated genome editing using a chimeric single-guide RNA molecule[J]. Front Plant Sci, 2017, 8: 1441.
|
7 |
Liang PP, Xu YW, Zhang XY, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes[J]. Protein Cell, 2015, 6(5): 363-372.
|
8 |
Pellagatti A, Dolatshad H, Valletta S, et al. Application of CRISPR/Cas9 genome editing to the study and treatment of disease[J]. Arch Toxicol, 2015, 89(7): 1023-1034.
|
9 |
Platt RJ, Chen S, Zhou Y, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling[J]. Cell, 2014, 159(2): 440-455.
|
10 |
Yin WX, Xiang P, Li QL. Investigations of the effect of DNA size in transient transfection assay using dual luciferase system[J]. Anal Biochem, 2005, 346(2): 289-294.
|
11 |
Adli M. The CRISPR tool kit for genome editing and beyond[J]. Nat Commun, 2018, 9(1): 1911.
|
12 |
Zhang XH, Tee LY, Wang XG, et al. Off-target effects in CRISPR/Cas9-mediated genome engineering[J]. Mol Ther Nucleic Acids, 2015, 4: e264.
|
13 |
Lin YN, Cradick TJ, Brown MT, et al. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences[J]. Nucleic Acids Res, 2014, 42(11): 7473-7485.
|
14 |
Aubrey BJ, Kelly GL, Kueh AJ, et al. An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo[J]. Cell Rep, 2015, 10(8): 1422-1432.
|
15 |
Cao J, Wu LZ, Zhang SM, et al. An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting[J]. Nucleic Acids Res, 2016, 44(19): e149.
|
16 |
Das AT, Tenenbaum L, Berkhout B. Tet-on systems for doxycycline-inducible gene expression[J]. Curr Gene Ther, 2016, 16(3): 156-167.
|
17 |
Herold MJ, van den Brandt J, Seibler J, et al. Inducible and reversible gene silencing by stable integration of an shRNA-encoding Lentivirus in transgenic rats[J]. PNAS, 2008, 105(47): 18507-18512.
|
18 |
Polstein LR, Gersbach CA. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation[J].Nat Chem Biol, 2015, 11(3):198-200.
|
19 |
Dow LE, Fisher J, O'Rourke KP, et al. Inducible in vivo genome editing with CRISPR-Cas9[J]. Nat Biotechnol, 2015, 33(4): 390-394.
|
20 |
Lu J, Zhao C, Zhao YZ, et al. Multimode drug inducible CRISPR/Cas9 devices for transcriptional activation and genome editing[J]. Nucleic Acids Res, 2018, 46(5): e25.
|
21 |
de Solis CA, Ho A, Holehonnur R, et al. The development of a viral mediated CRISPR/Cas9 system with doxycycline dependent gRNA expression for inducible in vitro and in vivo genome editing[J]. Front Mol Neurosci, 2016, 9: 70.
|
22 |
LaFleur MW, Nguyen TH, Coxe MA, et al. A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system[J]. Nat Commun, 2019, 10: 1668.
|