1 |
Detar DT. Understanding the disease of addiction[J]. Prim Care, 2011, 38(1): 1-7.
|
2 |
Zorick T, Sugar CA, Hellemann G, et al. Poor response to sertraline in methamphetamine dependence is associated with sustained craving for methamphetamine[J]. Drug Alcohol Depend, 2011, 118(2/3): 500-503.
|
3 |
Lee NK, Pohlman S, Baker A, et al. It's the thought that counts: craving metacognitions and their role in abstinence from methamphetamine use[J]. J Subst Abuse Treat, 2010, 38(3): 245-250.
|
4 |
Hartz DT, Frederick-Osborne SL, Galloway GP. Craving predicts use during treatment for methamphetamine dependence: a prospective, repeated-measures, within-subject analysis[J]. Drug Alcohol Depend, 2001, 63(3): 269-276.
|
5 |
Wikler A. Recent progress in research on the neurophysiologic basis of morphine addiction[J]. Am J Psychiatry, 1948, 105(5): 329-338.
|
6 |
Stewart J, de Wit H, Eikelboom R. Role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants[J]. Psychol Rev, 1984, 91(2): 251-268.
|
7 |
Siegel S. Evidence from rats that morphine tolerance is a learned response[J]. J Comp Physiol Psychol, 1975, 89(5): 498-506.
|
8 |
Stewart JL, May AC. Electrophysiology for addiction medicine: from methodology to conceptualization of reward deficits[J]. Prog Brain Res, 2016, 224: 67-84.
|
9 |
Littel M, Franken IH. Implicit and explicit selective attention to smoking cues in smokers indexed by brain potentials[J]. J Psychopharmacol, 2011, 25(4): 503-513.
|
10 |
Lubman DI, Allen NB, Peters LA, et al. Electrophysiological evidence of the motivational salience of drug cues in opiate addiction[J]. Psychol Med, 2007, 37(8): 1203-1209.
|
11 |
Henry EA, Kaye JT, Bryan AD, et al. Cannabis cue reactivity and craving among never, infrequent and heavy Cannabis users[J]. Neuropsychopharmacology, 2014, 39(5): 1214-1221.
|
12 |
Bartholow BD, Lust SA, Tragesser SL. Specificity of P3 event-related potential reactivity to alcohol cues in individuals low in alcohol sensitivity[J]. Psychol Addict Behav, 2010, 24(2): 220-228.
|
13 |
Littel M, Franken IH. The effects of prolonged abstinence on the processing of smoking cues: an ERP study among smokers, ex-smokers and never-smokers[J]. J Psychopharmacol, 2007, 21(8): 873-882.
|
14 |
Heinze M, Wölfling K, Grüsser SM. Cue-induced auditory evoked potentials in alcoholism[J]. Clin Neurophysiol, 2007, 118(4): 856-862.
|
15 |
Dunning JP, Parvaz MA, Hajcak G, et al. Motivated attention to cocaine and emotional cues in abstinent and current cocaine users: an ERP study[J]. Eur J Neurosci, 2011, 33(9): 1716-1723.
|
16 |
Robinson JD, Versace F, Engelmann JM, et al. The motivational salience of cigarette-related stimuli among former, never, and current smokers[J]. Exp Clin Psychopharmacol, 2015, 23(1): 37-48.
|
17 |
Versace F, Lam CY, Engelmann JM, et al. Beyond cue reactivity: blunted brain responses to pleasant stimuli predict long-term smoking abstinence[J]. Addict Biol, 2012, 17(6): 991-1000.
|
18 |
Wölfling K, Flor H, Grüsser SM. Psychophysiological responses to drug-associated stimuli in chronic heavy Cannabis use[J]. Eur J Neurosci, 2008, 27(4): 976-983.
|
19 |
Morrison SE, Saez A, Lau B, et al. Different time courses for learning-related changes in amygdala and orbitofrontal cortex[J]. Neuron, 2011, 71(6): 1127-1140.
|
20 |
Kamarajan C, Rangaswamy M, Manz N, et al. Topography, power, and current source density of θ oscillations during reward processing as markers for alcohol dependence[J]. Hum Brain Mapp, 2012, 33(5): 1019-1039.
|
21 |
Jones BT, Bruce G, Livingstone S, et al. Alcohol-related attentional bias in problem drinkers with the flicker change blindness paradigm[J]. Psychol Addict Behav, 2006, 20(2): 171-177.
|
22 |
McCane AM, Ahn S, Rubchinsky LL, et al. COMT inhibition alters cue-evoked oscillatory dynamics during alcohol drinking in the rat[J]. eNeuro, 2018, 5(5): ENEURO.0326-18.2018.
|
23 |
Moeller FG, Dougherty DM, Barratt ES, et al. The impact of impulsivity on cocaine use and retention in treatment[J]. J Subst Abuse Treat, 2001, 21(4): 193-198.
|
24 |
Goldstein RZ, Leskovjan AC, Hoff AL, et al. Severity of neuropsychological impairment in cocaine and alcohol addiction: association with metabolism in the prefrontal cortex[J]. Neuropsychologia, 2004, 42(11): 1447-1458.
|
25 |
Kübler A, Murphy K, Garavan H. Cocaine dependence and attention switching within and between verbal and visuospatial working memory[J]. Eur J Neurosci, 2005, 21(7): 1984-1992.
|
26 |
Kringelbach ML, Rolls ET. The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology[J]. Prog Neurobiol, 2004, 72(5): 341-372.
|
27 |
Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex[J]. Trends Cogn Sci, 2000, 4(6): 215-222.
|
28 |
Ikemoto S, Panksepp J. The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking[J]. Brain Res Brain Res Rev, 1999, 31(1): 6-41.
|
29 |
Bauernfeind AL, De Sousa AA, Avasthi T, et al. A volumetric comparison of the insular cortex and its subregions in primates[J]. J Hum Evol, 2013, 64(4): 263-279.
|
30 |
Seo D, Lacadie CM, Tuit K, et al. Disrupted ventromedial prefrontal function, alcohol craving, and subsequent relapse risk[J]. JAMA Psychiatry, 2013, 70(7): 727-739.
|
31 |
Volkow ND, Fowler JS, Wang GJ, et al. Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers[J]. Synapse, 1993, 14(2): 169-177.
|
32 |
Hanlon CA, Beveridge TJ, Porrino LJ. Recovering from cocaine: insights from clinical and preclinical investigations[J]. Neurosci Biobehav Rev, 2013, 37(9 Pt A): 2037-2046.
|
33 |
MacNiven KH, Jensen ELS, Borg N, et al. Association of neural responses to drug cues with subsequent relapse to stimulant use[J]. JAMA Netw Open, 2018, 1(8): e186466.
|
34 |
McHugh MJ, Demers CH, Braud J, et al. Striatal-insula circuits in cocaine addiction: implications for impulsivity and relapse risk[J]. Am J Drug Alcohol Abuse, 2013, 39(6): 424-432.
|
35 |
Schacht JP, Anton RF, Myrick H. Functional neuroimaging studies of alcohol cue reactivity: a quantitative meta-analysis and systematic review[J]. Addict Biol, 2013, 18(1): 121-133.
|
36 |
Courtney KE, Schacht JP, Hutchison K, et al. Neural substrates of cue reactivity: association with treatment outcomes and relapse[J]. Addict Biol, 2016, 21(1): 3-22.
|
37 |
Volkow ND, Wang GJ, Telang F, et al. Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction[J]. J Neurosci, 2006, 26(24): 6583-6588.
|
38 |
Wong DF, Kuwabara H, Schretlen DJ, et al. Increased occupancy of dopamine receptors in human striatum during cue-elicited cocaine craving[J]. Neuropsychopharmacology, 2006, 31(12): 2716-2727.
|
39 |
Szumlinski KK, Wroten MG, Miller BW, et al. Cocaine self-administration elevates GluN2B within dmPFC mediating heightened cue-elicited operant responding[J]. J Drug Abuse, 2016, 2(2): 22.
|
40 |
Farokhnia M, Deschaine SL, Sadighi A, et al. A deeper insight into how GABA-B receptor agonism via baclofen may affect alcohol seeking and consumption: lessons learned from a human laboratory investigation[J]. Mol Psychiatry, 2021, 26(2): 545-555.
|
41 |
Logge WB, Morris RW, Baillie AJ, et al. Baclofen attenuates fMRI alcohol cue reactivity in treatment-seeking alcohol dependent individuals[J]. Psychopharmacology (Berl), 2019. DOI:10.1007/s00213-019-05192-5.
|
42 |
Mann K, Vollstädt-Klein S, Reinhard I, et al. Predicting naltrexone response in alcohol-dependent patients: the contribution of functional magnetic resonance imaging[J]. Alcohol Clin Exp Res, 2014, 38(11): 2754-2762.
|
43 |
Feduccia AA, Simms JA, Mill D, et al. Varenicline decreases ethanol intake and increases dopamine release via neuronal nicotinic acetylcholine receptors in the nucleus accumbens[J]. Br J Pharmacol, 2014, 171(14): 3420-3431.
|
44 |
Langleben DD, Ruparel K, Elman I, et al. Acute effect of methadone maintenance dose on brain fMRI response to heroin-related cues[J]. Am J Psychiatry, 2008, 165(3): 390-394.
|
45 |
Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications[J]. Nat Rev Neurosci, 2011, 12(11): 652-669.
|
46 |
Rossini PM, Rossi S. Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential[J]. Neurology, 2007, 68(7): 484-488.
|
47 |
Bellamoli E, Manganotti P, Schwartz RP, et al. rTMS in the treatment of drug addiction: an update about human studies[J]. Behav Neurol, 2014, 2014: 815215.
|
48 |
Gorelick DA, Zangen A, George MS. Transcranial magnetic stimulation in the treatment of substance addiction[J]. Ann N Y Acad Sci, 2014, 1327(1): 79-93.
|