1 |
National Center for Biotechnology Information. PubChem Compound Summary for CID65076, Cholesterol sulfate[EB/OL].[2021-01-02]..
|
2 |
Koizumi M, Momoeda M, Hiroi H, et al. Expression and regulation of cholesterol sulfotransferase (SULT2B1b) in human endometrium[J]. Fertil Steril, 2010, 93(5): 1538-1544.
|
3 |
Zenri F, Hiroi H, Momoeda M, et al. Expression of retinoic acid-related orphan receptor α and its responsive genes in human endometrium regulated by cholesterol sulfate[J]. J Steroid Biochem Mol Biol, 2012, 128(1/2): 21-28.
|
4 |
Prah J, Winters A, Chaudhari K, et al. Cholesterol sulfate alters astrocyte metabolism and provides protection against oxidative stress[J]. Brain Res, 2019, 1723: 146378.
|
5 |
Strott CA, Higashi Y. Cholesterol sulfate in human physiology: what's it all about?[J]. J Lipid Res, 2003, 44(7): 1268-1278.
|
6 |
Sánchez-Guijo A, Oji V, Hartmann MF, et al. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS[J]. J Lipid Res, 2015, 56(9): 1843-1851.
|
7 |
Elias PM, Williams ML, Choi EH, et al. Role of cholesterol sulfate in epidermal structure and function: lessons from X-linked ichthyosis[J]. Biochim Biophys Acta, 2014, 1841(3): 353-361.
|
8 |
Nagata K, Yamazoe Y. Pharmacogenetics of sulfotransferase[J]. Annu Rev Pharmacol Toxicol, 2000, 40: 159-176.
|
9 |
Her C, Wood TC, Eichler EE, et al. Human hydroxysteroid sulfotransferase SULT2B1: two enzymes encoded by a single chromosome 19 gene[J]. Genomics, 1998, 53(3): 284-295.
|
10 |
Eckhart L, Tschachler E, Gruber F. Autophagic control of skin aging[J]. Front Cell Dev Biol, 2019, 7: 143.
|
11 |
Eckhart L, PLJMZeeuwen. The skin barrier: epidermis vs environment[J]. Exp Dermatol, 2018, 27(8): 805-806.
|
12 |
Feingold KR, Jiang YJ. The mechanisms by which lipids coordinately regulate the formation of the protein and lipid domains of the stratum corneum: role of fatty acids, oxysterols, cholesterol sulfate and ceramides as signaling molecules[J]. Dermatoendocrinol, 2011, 3(2): 113-118.
|
13 |
Hanley K, Wood L, Ng DC, et al. Cholesterol sulfate stimulates involucrin transcription in keratinocytes by increasing Fra-1, Fra-2, and Jun D[J]. J Lipid Res, 2001, 42(3): 390-398.
|
14 |
Denning MF, Kazanietz MG, Blumberg PM, et al. Cholesterol sulfate activates multiple protein kinase C isoenzymes and induces granular cell differentiation in cultured murine keratinocytes[J]. Cell Growth Differ, 1995, 6(12): 1619-1626.
|
15 |
Kawabe S, Ikuta T, Ohba M, et al. Cholesterol sulfate activates transcription of transglutaminase 1 gene in normal human keratinocytes[J]. J Invest Dermatol, 1998, 111(6): 1098-1102.
|
16 |
Kuroki T, Ikuta T, Kashiwagi M, et al. Cholesterol sulfate, an activator of protein kinase C mediating squamous cell differentiation: a review[J]. Mutat Res, 2000, 462(2/3): 189-195.
|
17 |
Hanyu O, Nakae H, Miida T, et al. Cholesterol sulfate induces expression of the skin barrier protein filaggrin in normal human epidermal keratinocytes through induction of RORα[J]. Biochem Biophys Res Commun, 2012, 428(1): 99-104.
|
18 |
Presland RB. Function of filaggrin and caspase-14 in formation and maintenance of the epithelial barrier[J]. Dermatol Sinica, 2009, 27: 1-14.
|
19 |
Wang F, Beck-García K, Zorzin C, et al. Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol[J]. Nat Immunol, 2016, 17(7): 844-850.
|
20 |
Ivanisevic J, Epstein AA, Kurczy ME, et al. Brain region mapping using global metabolomics[J]. Chem Biol, 2014, 21(11): 1575-1584.
|
21 |
Diociaiuti A, Angioni A, Pisaneschi E, et al. X-linked ichthyosis: clinical and molecular findings in 35 Italian patients[J]. Exp Dermatol, 2019, 28(10): 1156-1163.
|
22 |
郑晓草, 王剑巧, 曹先伟. X-连锁鱼鳞病[J]. 皮肤科学通报, 2020, 37(1): 36-41.
|
23 |
Fernandes NF, Janniger CK, Schwartz RA. X-linked ichthyosis: an oculocutaneous genodermatosis[J]. J Am Acad Dermatol, 2010, 62(3): 480-485.
|
24 |
Cañueto J, Ciria S, Hernández-Martín A, et al. Analysis of the STS gene in 40 patients with recessive X-linked ichthyosis: a high frequency of partial deletions in a Spanish population[J]. J Eur Acad Dermatol Venereol, 2010, 24(10): 1226-1229.
|
25 |
Elias PM, Williams ML, Feingold KR. Abnormal barrier function in the pathogenesis of ichthyosis: therapeutic implications for lipid metabolic disorders[J]. Clin Dermatol, 2012, 30(3): 311-322.
|
26 |
Kelly JW. Alternative conformations of amyloidogenic proteins govern their behavior[J]. Curr Opin Struct Biol, 1996, 6(1): 11-17.
|
27 |
沈怡君. Aβ蛋白在阿尔兹海默病中的损伤机制以及研究进展[J]. 中国实用神经疾病杂志, 2015, 18(1): 127-129.
|
28 |
di Paolo G, Kim TW. Linking lipids to Alzheimer's disease: cholesterol and beyond[J]. Nat Rev Neurosci, 2011, 12(5): 284-296.
|
29 |
Elbassal EA, Liu HY, Morris C, et al. Effects of charged cholesterol derivatives on Aβ40 amyloid formation[J]. J Phys Chem B, 2016, 120(1): 59-68.
|
30 |
Bi YH, Shi XJ, Zhu JJ, et al. Regulation of cholesterol sulfotransferase SULT2B1b by hepatocyte nuclear factor 4α constitutes a negative feedback control of hepatic gluconeogenesis[J]. Mol Cell Biol, 2018, 38(7): e00654-17.
|
31 |
Shi XJ, Cheng QQ, Xu LY, et al. Cholesterol sulfate and cholesterol sulfotransferase inhibit gluconeogenesis by targeting hepatocyte nuclear factor 4α[J]. Mol Cell Biol, 2014, 34(3): 485-497.
|
32 |
Paine MRL, Kim J, Bennett RV, et al. Whole reproductive system non-negative matrix factorization mass spectrometry imaging of an early-stage ovarian cancer mouse model[J]. PLoS One, 2016, 11(5): e0154837.
|
33 |
Johnson CH, Santidrian AF, LeBoeuf SE, et al. Metabolomics guided pathway analysis reveals link between cancer metastasis, cholesterol sulfate, and phospholipids[J]. Cancer Metab, 2017, 5: 9.
|
34 |
Turanli B, Karagoz K, Bidkhori G, et al. Multi-omic data interpretation to repurpose subtype specific drug candidates for breast cancer[J]. Front Genet, 2019, 10: 420.
|
35 |
Yang J, Broman MM, Cooper PO, et al. Distinct expression patterns of SULT2B1b in human prostate epithelium[J]. Prostate, 2019, 79(11): 1256-1266.
|
36 |
Park S, Song CS, Lin CL, et al. Inhibitory interplay of SULT2B1b sulfotransferase with AKR1C3 aldo-keto reductase in prostate cancer[J]. Endocrinology, 2020, 161(2): bqz042.
|
37 |
Vickman RE, Crist SA, Kerian K, et al. Cholesterol sulfonation enzyme, SULT2B1b, modulates AR and cell growth properties in prostate cancer[J]. Mol Cancer Res, 2016, 14(9): 776-786.
|
38 |
Vickman RE, Yang J, Lanman NA, et al. Cholesterol sulfotransferase SULT2B1b modulates sensitivity to death receptor ligand TNFα in castration-resistant prostate cancer[J]. Mol Cancer Res, 2019, 17(6): 1253-1263.
|
39 |
Yang XM, Du XC, Sun L, et al. SULT2B1b promotes epithelial-mesenchymal transition through activation of the β-catenin/MMP7 pathway in hepatocytes[J]. Biochem Biophys Res Commun, 2019, 510(4): 495-500.
|
40 |
Hu L, Yang GZ, Zhang Y, et al. Overexpression of SULT2B1b is an independent prognostic indicator and promotes cell growth and invasion in colorectal carcinoma[J]. Lab Invest, 2015, 95(9): 1005-1018.
|
41 |
Hong WT, Guo FH, Yang MJ, et al. Hydroxysteroid sulfotransferase 2B1 affects gastric epithelial function and carcinogenesis induced by a carcinogenic agent[J]. Lipids Health Dis, 2019, 18(1): 203.
|
42 |
Hu RK, Huffman KE, Chu M, et al. Quantitative secretomic analysis identifies extracellular protein factors that modulate the metastatic phenotype of non-small cell lung cancer[J]. J Proteome Res, 2016, 15(2): 477-486.
|
43 |
Samukange V, Yasukawa K, Inouye K. Effects of heparin and cholesterol sulfate on the activity and stability of human matrix metalloproteinase 7[J]. Biosci Biotechnol Biochem, 2014, 78(1): 41-48.
|
44 |
Yamamoto K, Miyazaki K, Higashi S. Cholesterol sulfate alters substrate preference of matrix metalloproteinase-7 and promotes degradations of pericellular laminin-332 and fibronectin[J]. J Biol Chem, 2010, 285(37): 28862-28873.
|
45 |
Yamamoto K, Miyazaki K, Higashi S. Pericellular proteolysis by matrix metalloproteinase-7 is differentially modulated by cholesterol sulfate, sulfatide, and cardiolipin[J]. FEBS J, 2014, 281(15): 3346-3356.
|
46 |
Prior SH, Fulcher YG, Koppisetti RK, et al. Charge-triggered membrane insertion of matrix metalloproteinase-7, supporter of innate immunity and tumors[J]. Structure, 2015, 23(11): 2099-2110.
|
47 |
Ishikawa T, Kimura Y, Hirano H, et al. Matrix metalloproteinase-7 induces homotypic tumor cell aggregation via proteolytic cleavage of the membrane-bound Kunitz-type inhibitor HAI-1[J]. J Biol Chem, 2017, 292(50): 20769-20784.
|