1 |
Schnabolk G. Systemic inflammatory disease and AMD comorbidity[J]. Adv Exp Med Biol, 2019, 1185: 27-31.
|
2 |
Wu MJ, Liu YM, Zhang H, et al. Intravenous injection of l-aspartic acid β-hydroxamate attenuates choroidal neovascularization via anti-VEGF and anti-inflammation[J]. Exp Eye Res, 2019, 182: 93-100.
|
3 |
Hasanreisoglu M, Mahajan S, Ozdemir HB, et al. Fungal endogenous endophthalmitis during pregnancy as a complication of in-vitro fertilization[J]. Ocul Immunol Inflamm, 2019: 1-4.
|
4 |
Sachdeva MM, Moshiri A, Leder HA, et al. Endophthalmitis following intravitreal injection of anti-VEGF agents: long-term outcomes and the identification of unusual micro-organisms[J]. J Ophthalmic Inflamm Infect, 2016, 6(1): 2.
|
5 |
Kook D, Wolf A, Neubauer AS, et al. Retinal pigment epithelial tears after intravitreal injection of bevacizumab for AMD. Frequency and progress[J]. Ophthalmologe, 2008, 105(2): 158-164.
|
6 |
Brar VS, Sharma RK, Murthy RK, et al. Bevacizumab neutralizes the protective effect of vascular endothelial growth factor on retinal ganglion cells[J]. Mol Vis, 2010, 16: 1848-1853.
|
7 |
Garweg JG. Atrophy of the macula in the context of its wet, age-related degeneration: an inescapable consequence of anti-VEGF therapy?[J]. Ophthalmologe, 2016, 113(12): 1036-1045.
|
8 |
Gemenetzi M, Lotery AJ, Patel PJ. Risk of geographic atrophy in age-related macular degeneration patients treated with intravitreal anti-VEGF agents[J]. Eye (Lond), 2017, 31(1): 1-9.
|
9 |
Young M, Chui LC, Fallah N, et al. Exacerbation of choroidal and retinal pigment epithelial atrophy after anti-vascular endothelial growth factor treatment in neovascular age-related macular degeneration[J]. Retina (Philadelphia, Pa), 2014, 34(7): 1308-1315.
|
10 |
Rofagha S, Bhisitkul RB, Boyer DS, et al. Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP)[J]. Ophthalmology, 2013, 120(11): 2292-2299.
|
11 |
Lai YK, Shen WY, Brankov M, et al. Potential long-term inhibition of ocular neovascularisation by recombinant adeno-associated virus-mediated secretion gene therapy[J]. Gene Ther, 2002, 9(12): 804-813.
|
12 |
Decaussin M, Sartelet H, Robert C, et al. Expression of vascular endothelial growth factor (VEGF) and its two receptors (VEGF-R1-Flt1 and VEGF-R2-Flk1/KDR) in non-small cell lung carcinomas (NSCLCs): correlation with angiogenesis and survival[J]. J Pathol, 1999, 188(4): 369-377.
|
13 |
Kendall RL, Wang G, Thomas KA. Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR[J]. Biochem Biophys Res Commun, 1996, 226(2): 324-328.
|
14 |
Lai CM, Shen WY, Brankov M, et al. Long-term evaluation of AAV-mediated sFlt-1 gene therapy for ocular neovascularization in mice and monkeys[J]. Mol Ther, 2005, 12(4): 659-668.
|
15 |
Lai CM, Estcourt MJ, Wikstrom M, et al. rAAV.sFlt-1 gene therapy achieves lasting reversal of retinal neovascularization in the absence of a strong immune response to the viral vector[J]. Invest Ophthalmol Vis Sci, 2009, 50(9): 4279-4287.
|
16 |
Lai CM, Estcourt MJ, Himbeck RP, et al. Preclinical safety evaluation of subretinal AAV2.sFlt-1 in non-human primates[J]. Gene Ther, 2012, 19(10): 999-1009.
|
17 |
Rakoczy EP, Lai CM, Magno AL, et al. Gene therapy with recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 year follow-up of a phase 1 randomised clinical trial[J]. Lancet, 2015, 386(10011): 2395-2403.
|
18 |
Constable IJ, Pierce CM, Lai CM, et al. Phase 2a randomized clinical trial: safety and post hoc analysis of subretinal rAAV.sFLT-1 for wet age-related macular degeneration[J]. EBioMedicine, 2016, 14: 168-175.
|
19 |
Rakoczy PE, Magno AL, Lai CM, et al. Subanalysis of data from rAAV.sFLT-1 phase 1 and 2a randomized gene therapy trials for wet age-related macular degeneration[R]. Honolulu: Association for Research in Vision and Ophthalmology, 2018.
|
20 |
Heier JS, Kherani S, Desai S, et al. Intravitreous injection of AAV2-sFLT01 in patients with advanced neovascular age-related macular degeneration: a phase 1, open-label trial[J]. Lancet, 2017, 390(10089): 50-61.
|
21 |
Pechan P, Rubin H, Lukason M, et al. Novel anti-VEGF chimeric molecules delivered by AAV vectors for inhibition of retinal neovascularization[J]. Gene Ther, 2009, 16(1): 10-16.
|
22 |
Lukason M, DuFresne E, Rubin H, et al. Inhibition of choroidal neovascularization in a nonhuman primate model by intravitreal administration of an AAV2 vector expressing a novel anti-VEGF molecule[J]. Mol Ther, 2011, 19(2): 260-265.
|
23 |
Maclachlan TK, Lukason M, Collins M, et al. Preclinical safety evaluation of AAV2-sFLT01: a gene therapy for age-related macular degeneration[J]. Mol Ther, 2011, 19(2): 326-334.
|
24 |
Reid CA, Nettesheim ER, Connor TB, et al. Development of an inducible anti-VEGF rAAV gene therapy strategy for the treatment of wet AMD[J]. Sci Rep, 2018, 8(1): 11763.
|
25 |
Ohr M, Kaiser PK. Intravitreal aflibercept injection for neovascular (wet) age-related macular degeneration[J]. Expert Opin Pharmacother, 2012, 13(4): 585-591.
|
26 |
Groher F, Suess B. Synthetic riboswitches: a tool comes of age[J]. Biochim Biophys Acta, 2014, 1839(10): 964-973.
|
27 |
Regenxbio announces IND active for phase I trial of RGX-314 to treat wet age-related macular degeneration[EB/OL].(2017-02-14)[2020-07-01]..
|
28 |
Arkady L, Erik W, Tomas SA, et al. Safety of subretinal delivery of RGX-314 (AAV8-anti-VEGF fab) in the non-human primate as assessed by full-field ERG[R]. Honolulu: Association for Research in Vision and Ophthalmology, 2018.
|
29 |
Regenxbio announces additional positive interim phase I trial update for RGX-314 for the treatment of wet AMD at the American academy of ophthalmology 2018 meetingannual [EB/OL].(2018-10-26)[2020-07-01]..
|
30 |
Jaffe GJ, Eliott D, Wells JA, et al. A phase 1 study of intravitreous E10030 in combination with ranibizumab in neovascular age-related macular degeneration[J]. Ophthalmology, 2016, 123(1): 78-85.
|
31 |
Caporarello N, D'Angeli F, Cambria MT, et al. Pericytes in microvessels: from "mural" function to brain and retina regeneration[J]. Int J Mol Sci, 2019, 20(24): E6351.
|
32 |
Trost A, Lange S, Schroedl F, et al. Brain and retinal pericytes: origin, function and role[J]. Front Cell Neurosci, 2016, 10: 20.
|
33 |
Ishikawa K, Kannan R, Hinton DR. Molecular mechanisms of subretinal fibrosis in age-related macular degeneration[J]. Exp Eye Res, 2016, 142: 19-25.
|
34 |
Luo XT, Yang SQ, Liang J, et al. Choroidal pericytes promote subretinal fibrosis after experimental photocoagulation[J]. Dis Model Mech, 2018, 11(4): dmm032060.
|
35 |
Jaffe GJ, Ciulla TA, Ciardella AP, et al. Dual antagonism of PDGF and VEGF in neovascular age-related macular degeneration: a phase IIb, multicenter, randomized controlled trial[J]. Ophthalmology, 2017, 124(2): 224-234.
|
36 |
Mitchell TS, Bradley J, Robinson GS, et al. RGS5 expression is a quantitative measure of pericyte coverage of blood vessels[J]. Angiogenesis, 2008, 11(2): 141-151.
|
37 |
Jo N, Mailhos C, Ju MH, et al. Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization[J]. Am J Pathol, 2006, 168(6): 2036-2053.
|
38 |
Corporation Ophthotech.Ophthotech announces results from third phase 3 trial of Fovista® in wet age-related macular degeneration[EB/OL].(2017-08-14)[2020-07-01].®.
|
39 |
Daniel E, Toth CA, Grunwald JE, et al. Risk of scar in the comparison of age-related macular degeneration treatments trials[J]. Ophthalmology, 2014, 121(3): 656-666.
|
40 |
Sharma S, Toth CA, Daniel E, et al. Macular morphology and visual acuity in the second year of the comparison of age-related macular degeneration treatments trials[J]. Ophthalmology, 2016, 123(4): 865-875.
|
41 |
Mohamad NA, Ramachandran V, Ismail P, et al. Analysis of the association between CFH Y402H polymorphism and response to intravitreal ranibizumab in patients with neovascular age-related macular degeneration (nAMD)[J]. Bosn J Basic Med Sci, 2018, 18(3): 260-267.
|
42 |
Toomey CB, Johnson LV, Bowes Rickman C. Complement factor H in AMD: bridging genetic associations and pathobiology[J]. Prog Retin Eye Res, 2018, 62: 38-57.
|
43 |
Mullins RF, Schoo DP, Sohn EH, et al. The membrane attack complex in aging human choriocapillaris: relationship to macular degeneration and choroidal thinning[J]. Am J Pathol, 2014, 184(11): 3142-3153.
|
44 |
Bora PS, Sohn JH, Cruz JM, et al. Role of complement and complement membrane attack complex in laser-induced choroidal neovascularization[J]. J Immunol, 2005, 174(1): 491-497.
|
45 |
Schnabolk G, Beon MK, Tomlinson S, et al. New insights on complement inhibitor CD59 in mouse laser-induced choroidal neovascularization: mislocalization after injury and targeted delivery for protein replacement[J]. J Ocul Pharmacol Ther, 2017, 33(5): 400-411.
|
46 |
Ramo K, Cashman SM, Kumar-Singh R. Evaluation of adenovirus-delivered human CD59 as a potential therapy for AMD in a model of human membrane attack complex formation on murine RPE[J]. Invest Ophthalmol Vis Sci, 2008, 49(9): 4126-4136.
|
47 |
Cashman SM, Ramo K, Kumar-Singh R. A non membrane-targeted human soluble CD59 attenuates choroidal neovascularization in a model of age related macular degeneration[J]. PLoS One, 2011, 6(4): e19078.
|