1 |
GAYNES R, EDWARDS J R, SYSTEM N N I S. Overview of nosocomial infections caused by gram-negative bacilli[J]. Clin Infect Dis, 2005, 41(6): 848-854.
|
2 |
KALIL A C, METERSKY M L, KLOMPAS M, et al. Executive summary: management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the infectious diseases society of America and the American thoracic society[J]. Clin Infect Dis, 2016, 63(5): 575-582.
|
3 |
LYCZAK J B, CANNON C L, PIER G B. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist[J]. Microbes Infect, 2000, 2(9): 1051-1060.
|
4 |
HOOPER D C. New uses for new and old quinolones and the challenge of resistance[J]. Clin Infect Dis, 2000, 30(2): 243-254.
|
5 |
ANDRIOLE V T. The quinolones: past, present, and future[J]. Clin Infect Dis, 2005, 41(Suppl 2): S113-S119.
|
6 |
LEE J K, LEE Y S, PARK Y K, et al. Alterations in the GyrA and GyrB subunits of topoisomerase II and the ParC and ParE subunits of topoisomerase Ⅳ in ciprofloxacin-resistant clinical isolates of Pseudomonas aeruginosa[J]. Int J Antimicrob Agents, 2005, 25(4): 290-295.
|
7 |
LLANES C, KÖHLER T, PATRY I, et al. Role of the MexEF-OprN efflux system in low-level resistance of Pseudomonas aeruginosa to ciprofloxacin[J]. Antimicrob Agents Chemother, 2011, 55(12): 5676-5684.
|
8 |
EL-HALFAWY O M, VALVANO M A. Antimicrobial heteroresistance: an emerging field in need of clarity[J]. Clin Microbiol Rev, 2015, 28(1): 191-207.
|
9 |
MORAND B, MÜHLEMANN K. Heteroresistance to penicillin in Streptococcus pneumoniae[J]. Proc Natl Acad Sci USA, 2007, 104(35): 14098-14103.
|
10 |
OKADO J B, AVACA-CRUSCA J S, OLIVEIRA A L, et al. Daptomycin and vancomycin heteroresistance revealed among CC5-SCCmecII MRSA clone and in vitro evaluation of treatment alternatives[J]. J Glob Antimicrob Resist, 2018, 14: 209-216.
|
11 |
ANDERSSON D I, NICOLOFF H, HJORT K. Mechanisms and clinical relevance of bacterial heteroresistance[J]. Nat Rev Microbiol, 2019, 17(8): 479-496.
|
12 |
JIA X J, MA W J, HE J C, et al. Heteroresistance to cefepime in Pseudomonas aeruginosa bacteraemia[J]. Int J Antimicrob Agents, 2020, 55(3): 105832.
|
13 |
HE J C, JIA X J, YANG S S, et al. Heteroresistance to carbapenems in invasive Pseudomonas aeruginosa infections[J]. Int J Antimicrob Agents, 2018, 51(3): 413-421.
|
14 |
POURNARAS S, IKONOMIDIS A, MARKOGIANNAKIS A, et al. Characterization of clinical isolates of Pseudomonas aeruginosa heterogeneously resistant to carbapenems[J]. J Med Microbiol, 2007, 56(Pt 1): 66-70.
|
15 |
HERMES D M, PORMANN PITT C, LUTZ L, et al. Evaluation of heteroresistance to polymyxin B among carbapenem-susceptible and-resistant Pseudomonas aeruginosa[J]. J Med Microbiol, 2013, 62(8): 1184-1189.
|
16 |
MEI S C, GAO Y L, ZHU C T, et al. Research of the heteroresistance of Pseudomonas aeruginosa to imipenem[J]. Int J Clin Exp Med, 2015, 8(4): 6129-6132.
|
17 |
NICOLOFF H, HJORT K, LEVIN B R, et al. The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification[J]. Nat Microbiol, 2019, 4(3): 504-514.
|
18 |
XU Y, ZHENG X K, ZENG W L, et al. Mechanisms of heteroresistance and resistance to imipenem in Pseudomonas aeruginosa[J]. Infect Drug Resist, 2020, 13: 1419-1428.
|
19 |
OH H, STENHOFF J, JALAL S, et al. Role of efflux pumps and mutations in genes for topoisomerases II and IV in fluoroquinolone-resistant Pseudomonas aeruginosa strains[J]. Microb Drug Resist, 2003, 9(4): 323-328.
|
20 |
GOLI H R, NAHAEI M R, REZAEE M A, et al. Contribution of mexAB-oprM and mexXY (-oprA) efflux operons in antibiotic resistance of clinical Pseudomonas aeruginosa isolates in Tabriz, Iran[J]. Infect Genet Evol, 2016, 45: 75-82.
|
21 |
JØRGENSEN K M, WASSERMANN T, JENSEN P Ø, et al. Sublethal ciprofloxacin treatment leads to rapid development of high-level ciprofloxacin resistance during long-term experimental evolution of Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2013, 57(9): 4215-4221.
|