1 |
JORDAN D M, DO R. Using full genomic information to predict disease: breaking down the barriers between complex and Mendelian diseases[J]. Annu Rev Genomics Hum Genet, 2018, 19: 289-301.
|
2 |
SULLIVAN J A, SCHOCH K, SPILLMANN R C, et al. Exome/genome sequencing in undiagnosed syndromes[J]. Annu Rev Med, 2023, 74: 489-502.
|
3 |
LORD J, MCMULLAN D J, EBERHARDT R Y, et al. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study[J]. Lancet, 2019, 393(10173): 747-757.
|
4 |
WRIGHT C F, FITZPATRICK D R, FIRTH H V. Paediatric genomics: diagnosing rare disease in children[J]. Nat Rev Genet, 2018, 19(5): 253-268.
|
5 |
JURGENS S J, CHOI S H, MORRILL V N, et al. Analysis of rare genetic variation underlying cardiometabolic diseases and traits among 200 000 individuals in the UK Biobank[J]. Nat Genet, 2022, 54(3): 240-250.
|
6 |
ZHAO J, ZHANG S Q, JIANG Y, et al. Mutation analysis of the WFS1 gene in a Chinese family with autosomal-dominant non-syndrome deafness[J]. Sci Rep, 2022, 12(1): 22180.
|
7 |
ZHANG H C, COLCLOUGH K, GLOYN A L, et al. Monogenic diabetes: a gateway to precision medicine in diabetes[J]. J Clin Invest, 2021, 131(3): e142244.
|
8 |
LI X H, QUICK C, ZHOU H F, et al. Powerful, scalable and resource-efficient meta-analysis of rare variant associations in large whole genome sequencing studies[J]. Nat Genet, 2023, 55(1): 154-164.
|
9 |
GIBBS R A. The human genome project changed everything[J]. Nat Rev Genet, 2020, 21(10): 575-576.
|
10 |
FLANNICK J, MERCADER J M, FUCHSBERGER C, et al. Exome sequencing of 20 791 cases of type 2 diabetes and 24 440 controls[J]. Nature, 2019, 570(7759): 71-76.
|
11 |
TANAKA D, NAGASHIMA K, SASAKI M, et al. Exome sequencing identifies a new candidate mutation for susceptibility to diabetes in a family with highly aggregated type 2 diabetes[J]. Mol Genet Metab, 2013, 109(1): 112-117.
|
12 |
PALLOTTA M T, TASCINI G, CRISPOLDI R, et al. Wolfram syndrome, a rare neurodegenerative disease: from pathogenesis to future treatment perspectives[J]. J Transl Med, 2019, 17(1): 238.
|
13 |
MORIKAWA S, URANO F. The role of ER stress in diabetes: exploring pathological mechanisms using Wolfram syndrome[J]. Int J Mol Sci, 2022, 24(1): 230.
|
14 |
CROUZIER L, DANESE A, YASUI Y, et al. Activation of the sigma-1 receptor chaperone alleviates symptoms of Wolfram syndrome in preclinical models[J]. Sci Transl Med, 2022, 14(631): eabh3763.
|
15 |
WANG L L, LIU H Y, ZHANG X F, et al. WFS1 functions in ER export of vesicular cargo proteins in pancreatic β-cells[J]. Nat Commun, 2021, 12(1): 6996.
|
16 |
CHEN Y, ZHANG M, ZHOU Y Y, et al. Case report: a novel mutation in WFS1 gene (c.1756G>A p.A586T) is responsible for early clinical features of cognitive impairment and recurrent ischemic stroke[J]. Front Genet, 2023, 14: 1072978.
|
17 |
KABANOVSKI A, DONALDSON L, MARGOLIN E. Neuro-ophthalmological manifestations of Wolfram syndrome: case series and review of the literature[J]. J Neurol Sci, 2022, 437: 120267.
|
18 |
SMITH C J, CROCK P A, KING B R, et al. Phenotype-genotype correlations in a series of wolfram syndrome families[J]. Diabetes Care, 2004, 27(8): 2003-2009.
|
19 |
COLOSIMO A, GUIDA V, RIGOLI L, et al. Molecular detection of novel WFS1 mutations in patients with Wolfram syndrome by a DHPLC-based assay[J]. Hum Mutat, 2003, 21(6): 622-629.
|
20 |
CANO A, ROUZIER C, MONNOT S, et al. Identification of novel mutations in WFS1 and genotype-phenotype correlation in Wolfram syndrome[J]. Am J Med Genet A, 2007, 143A(14): 1605-1612.
|