1 |
SOLTER D. From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research[J]. Nat Rev Genet, 2006, 7(4): 319-327.
|
2 |
COCKBURN K, ROSSANT J. Making the blastocyst: lessons from the mouse[J]. J Clin Invest, 2010, 120(4): 995-1003.
|
3 |
EVANS M J, KAUFMAN M H. Establishment in culture of pluripotential cells from mouse embryos[J]. Nature, 1981, 292(5819): 154-156.
|
4 |
MARTIN G R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells[J]. Proc Natl Acad Sci U S A, 1981, 78(12): 7634-7638.
|
5 |
YANG J, RYAN D J, WANG W, et al. Establishment of mouse expanded potential stem cells[J]. Nature, 2017, 550(7676): 393-397.
|
6 |
YANG Y, LIU B, XU J, et al. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency[J]. Cell, 2017, 169(2): 243-257.e25.
|
7 |
GAO X F, NOWAK-IMIALEK M, CHEN X, et al. Establishment of porcine and human expanded potential stem cells[J]. Nat Cell Biol, 2019, 21(6): 687-699.
|
8 |
LI R H, ZHONG C Q, YU Y, et al. Generation of blastocyst-like structures from mouse embryonic and adult cell cultures[J]. Cell, 2019, 179(3): 687-702.e18.
|
9 |
LIU K S, XU X C, BAI D D, et al. Bilineage embryo-like structure from EPS cells can produce live mice with tetraploid trophectoderm[J]. Protein Cell, 2023, 14(4): 262-278.
|
10 |
MACFARLAN T S, GIFFORD W D, DRISCOLL S, et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity[J]. Nature, 2012, 487(7405): 57-63.
|
11 |
BOŠKOVIĆ A, EID A, PONTABRY J, et al. Higher chromatin mobility supports totipotency and precedes pluripotency in vivo[J]. Genes Dev, 2014, 28(10): 1042-1047.
|
12 |
BAKER C L, PERA M F. Capturing totipotent stem cells[J]. Cell Stem Cell, 2018, 22(1): 25-34.
|
13 |
HU Y Y, YANG Y Y, TAN P C, et al. Induction of mouse totipotent stem cells by a defined chemical cocktail[J]. Nature, 2023, 617(7962): 792-797.
|
14 |
SHEN H, YANG M, LI S Y, et al. Mouse totipotent stem cells captured and maintained through spliceosomal repression[J]. Cell, 2021, 184(11): 2843-2859.e20.
|
15 |
WHIDDON J L, LANGFORD A T, WONG C J, et al. Conservation and innovation in the DUX4-family gene network[J]. Nat Genet, 2017, 49(6): 935-940.
|
16 |
HENDRICKSON P G, DORÁIS J A, GROW E J, et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons[J]. Nat Genet, 2017, 49(6): 925-934.
|
17 |
DE IACO A, PLANET E, COLUCCIO A, et al. DUX-family transcription factors regulate zygotic genome activation in placental mammals[J]. Nat Genet, 2017, 49(6): 941-945.
|
18 |
FU X D, WU X J, DJEKIDEL M N, et al. Myc and Dnmt1 impede the pluripotent to totipotent state transition in embryonic stem cells[J]. Nat Cell Biol, 2019, 21(7): 835-844.
|
19 |
HU Z H, TAN D E K, CHIA G, et al. Maternal factor NELFA drives a 2C-like state in mouse embryonic stem cells[J]. Nat Cell Biol, 2020, 22(2): 175-186.
|
20 |
YANG F, HUANG X, ZANG R G, et al. DUX-miR-344-ZMYM2-mediated activation of MERVL LTRs induces a totipotent 2C-like state[J]. Cell Stem Cell, 2020, 26(2): 234-250.e7.
|
21 |
YANG G, ZHANG L F, LIU W Q, et al. Dux-mediated corrections of aberrant H3K9ac during 2-cell genome activation optimize efficiency of somatic cell nuclear transfer[J]. Cell Stem Cell, 2021, 28(1): 150-163.e5.
|
22 |
XU R M, LI S, WU Q, et al. Stage-specific H3K9me3 occupancy ensures retrotransposon silencing in human pre-implantation embryos[J]. Cell Stem Cell, 2022, 29(7): 1051-1066.e8.
|
23 |
ZUO F F, JIANG J Y, FU H P, et al. A TRIM66/DAX1/Dux axis suppresses the totipotent 2-cell-like state in murine embryonic stem cells[J]. Cell Stem Cell, 2022, 29(6): 948-961.e6.
|
24 |
WANG Y Q, NA Q, LI X H, et al. Retinoic acid induces NELFA-mediated 2C-like state of mouse embryonic stem cells associates with epigenetic modifications and metabolic processes in chemically defined media[J]. Cell Prolif, 2021, 54(6): e13049.
|
25 |
GIGUERE V, ONG E S, SEGUI P, et al. Identification of a receptor for the morphogen retinoic acid[J]. Nature, 1987, 330(6149): 624-629.
|
26 |
ITURBIDE A, RUIZ TEJADA SEGURA M L, NOLL C, et al. Retinoic acid signaling is critical during the totipotency window in early mammalian development[J]. Nat Struct Mol Biol, 2021, 28(6): 521-532.
|
27 |
HAMILTON W B, BRICKMAN J M. Erk signaling suppresses embryonic stem cell self-renewal to specify endoderm[J]. Cell Rep, 2014, 9(6): 2056-2070.
|
28 |
YEN A, ROBERSON M S, VARVAYANIS S, et al. Retinoic acid induced mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase-dependent MAP kinase activation needed to elicit HL-60 cell differentiation and growth arrest[J]. Cancer Res, 1998, 58(14): 3163-3172.
|
29 |
ARCECI R J, KING A A, SIMON M C, et al. Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart[J]. Mol Cell Biol, 1993, 13(4): 2235-2246.
|
30 |
MITSUHASHI H, ISHIMARU S, HOMMA S, et al. Functional domains of the FSHD-associated DUX4 protein[J]. Biol Open, 2018, 7(4): bio033977.
|
31 |
GENG L N, YAO Z Z, SNIDER L, et al. DUX4 activates germline genes, retroelements, and immune mediators: implications for facioscapulohumeral dystrophy[J]. Dev Cell, 2012, 22(1): 38-51.
|
32 |
OLBRICH T, VEGA-SENDINO M, TILLO D, et al. CTCF is a barrier for 2C-like reprogramming[J]. Nat Commun, 2021, 12(1): 4856.
|
33 |
LEZCANO C, JUNGBLUTH A A, NEHAL K S, et al. PRAME expression in melanocytic tumors[J]. Am J Surg Pathol, 2018, 42(11): 1456-1465.
|
34 |
MARKIEWICZ-POTOCZNY M, LOBANOVA A, LOEB A M, et al. TRF2-mediated telomere protection is dispensable in pluripotent stem cells[J]. Nature, 2021, 589(7840): 110-115.
|
35 |
SRINIVASAN R, NADY N, ARORA N, et al. Zscan4 binds nucleosomal microsatellite DNA and protects mouse two-cell embryos from DNA damage[J]. Sci Adv, 2020, 6(12): eaaz9115.
|
36 |
ZALZMAN M, FALCO G, SHAROVA L V, et al. Zscan4 regulates telomere elongation and genomic stability in ES cells[J]. Nature, 2010, 464(7290): 858-863.
|
37 |
TAGLIAFERRI D, MAZZONE P, NOVIELLO T M R, et al. Retinoic acid induces embryonic stem cells (ESCs) transition to 2 cell-like state through a coordinated expression of Dux and Duxbl1[J]. Front Cell Dev Biol, 2019, 7: 385.
|
38 |
NAPOLITANO G, TAGLIAFERRI D, FUSCO S, et al. A novel member of Prame family, Gm12794c, counteracts retinoic acid differentiation through the methyltransferase activity of PRC2[J]. Cell Death Differ, 2020, 27(1): 345-362.
|