1 |
Titan AL, Foster DS, Chang J, et al. Flexor tendon: development, healing, adhesion formation, and contributing growth factors[J]. Plast Reconstr Surg, 2019, 144(4): 639e-647e.
|
2 |
Legrand A, Kaufman Y, Long C, et al. Molecular biology of flexor tendon healing in relation to reduction of tendon adhesions[J]. J Hand Surg Am, 2017, 42(9): 722-726.
|
3 |
陈明姣, 范先群. 透明质酸-明胶双网络水凝胶促进骨髓间充质干细胞成骨分化的作用[J]. 上海交通大学学报(医学版), 2018, 38(7): 722-731.
|
4 |
YurdakulSıkar E, Sıkar HE, Top H, et al. Effects of Hyalobarrier gel and Seprafilm in preventing peritendinous adhesions following crush-type injury in a rat model[J]. Ulus Travma Acil Cerrahi Derg, 2019, 25(2): 93-98.
|
5 |
Edsfeldt S, Holm B, Mahlapuu M, et al. PXL01 in sodium hyaluronate results in increased PRG4 expression: a potential mechanism for anti-adhesion[J]. Ups J Med Sci, 2017, 122(1): 28-34.
|
6 |
Chen CT, Chen CH, Sheu C, et al. Ibuprofen-loaded hyaluronic acid nanofibrous membranes for prevention of postoperative tendon adhesion through reduction of inflammation[J]. Int J Mol Sci, 2019, 20(20): E5038.
|
7 |
Zhou YL, Yang QQ, Yan YY, et al. Localized delivery of miRNAs targets cyclooxygenases and reduces flexor tendon adhesions[J]. Acta Biomater, 2018, 70: 237-248.
|
8 |
Lin LX, Yuan F, Zhang HH, et al. Evaluation of surgical anti-adhesion products to reduce postsurgical intra-abdominal adhesion formation in a rat model[J]. PLoS One, 2017, 12(2): e0172088.
|
9 |
杨川峰, 彭银波, 郝健, 等. 新型壳聚糖-硝酸银凝胶材料的杀菌效果及创面应用[J]. 上海交通大学学报(医学版), 2017, 37(7): 1004-1009.
|
10 |
Chou PY, Chen SH, Chen CH, et al. Thermo-responsive in-situ forming hydrogels as barriers to prevent post-operative peritendinous adhesion[J]. Acta Biomater, 2017, 63: 85-95.
|
11 |
Chen Q, Lu H, Yang H. Chitosan prevents adhesion during rabbit flexor tendon repair via the sirtuin 1 signaling pathway[J]. Mol Med Rep, 2015, 12(3): 4598-4603.
|
12 |
Liu CJ, Yu KL, Bai JB, et al. Experimental study of tendon sheath repair via decellularized amnion to prevent tendon adhesion[J]. PLoS One, 2018, 13(10): e0205811.
|
13 |
Liu CJ, Bai JB, Yu KL, et al. Biological amnion prevents flexor tendon adhesion in zone Ⅱ: a controlled, multicentre clinical trial[J]. Biomed Res Int, 2019, 2019: 2354325.
|
14 |
Ding B, Wang X, Yao M. Photochemical tissue bonding technique for improving healing of hand tendon injury[J]. Surg Innov, 2019, 26(2): 153-161.
|
15 |
Leppänen OV, Karjalainen T, Göransson H, et al. Outcomes after flexor tendon repair combined with the application of human amniotic membrane allograft[J]. J Hand Surg Am, 2017, 42(6): 474.e1-474.e8.
|
16 |
Liu CJ, Tian SY, Bai JB, et al. Regulation of ERK1/2 and SMAD2/3 pathways by using multi-layered electrospun PCL-amnion nanofibrous membranes for the prevention of post-surgical tendon adhesion[J]. Int J Nanomedicine, 2020, 15: 927-942.
|
17 |
Tomeh MA, Hadianamrei R, Zhao XB. Silk fibroin as a functional biomaterial for drug and gene delivery[J]. Pharmaceutics, 2019, 11(10): E494.
|
18 |
Ni T, Senthil-Kumar P, Dubbin K, et al. A photoactivated nanofiber graft material for augmented Achilles tendon repair[J]. Lasers Surg Med, 2012, 44(8): 645-652.
|
19 |
Yao SY, Xie YL, Xiao LF, et al. Porous and nonporous silk fibroin (SF) membranes wrapping for Achilles tendon (AT) repair: which one is a better choice?[J]. J Biomed Mater Res B Appl Biomater, 2019, 107(3): 733-740.
|
20 |
Hsu YI, Yamaoka T. Improved exposure of bioactive peptides to the outermost surface of the polylactic acid nanofiber scaffold[J]. J Biomed Mater Res B Appl Biomater, 2020, 108(4): 1274-1280.
|
21 |
Liu S, Chen H, Wu TY, et al. Macrophage infiltration of electrospun polyester fibers[J]. Biomater Sci, 2017, 5(8): 1579-1587.
|
22 |
Bai H, Deng S, Bai D,et al. Recent advances in processing of stereocomplex-type polylactide[J]. Macromol Rapid Commun, 2017, 38(23). DOI: 10.1002/marc.201700454.
|
23 |
Yu BW, Meng L, Fu SR, et al. Morphology and internal structure control over PLA microspheres by compounding PLLA and PDLA and effects on drug release behavior[J]. Colloids Surf B Biointerfaces, 2018, 172: 105-112.
|
24 |
Rajzer I, Menaszek E, Castano O. Electrospun polymer scaffolds modified with drugs for tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2017, 77: 493-499.
|
25 |
Chen SH, Chen CH, Shalumon KT, et al. Preparation and characterization of antiadhesion barrier film from hyaluronic acid-grafted electrospun poly(caprolactone) nanofibrous membranes for prevention of flexor tendon postoperative peritendinous adhesion[J]. Int J Nanomedicine, 2014, 9: 4079-4092.
|
26 |
Shalumon KT, Sheu C, Chen CH, et al. Multi-functional electrospun antibacterial core-shell nanofibrous membranes for prolonged prevention of post-surgical tendon adhesion and inflammation[J]. Acta Biomater, 2018, 72: 121-136.
|
27 |
Hsu SH, Dai LG, Hung YM, et al. Evaluation and characterization of waterborne biodegradable polyurethane films for the prevention of tendon postoperative adhesion[J]. Int J Nanomedicine, 2018, 13: 5485-5497.
|
28 |
Chen SH, Chou PY, Chen ZY, et al. Electrospun water-borne polyurethane nanofibrous membrane as a barrier for preventing postoperative peritendinous adhesion[J]. Int J Mol Sci, 2019, 20(7): E1625.
|
29 |
Li Y, Fan P, Ding XM, et al. Polyglycolic acid fibrous scaffold improving endothelial cell coating and vascularization of islet[J]. Chin Med J (Engl), 2017, 130(7): 832-839.
|
30 |
Xu L, Cao DJ, Liu W, et al. In vivo engineering of a functional tendon sheath in a hen model[J]. Biomaterials, 2010, 31(14): 3894-3902.
|
31 |
Lin XX, Wang WB, Zhang WJ, et al. Hyaluronic acid coating enhances biocompatibility of nonwoven PGA scaffold and cartilage formation[J]. Tissue Eng Part C Methods, 2017, 23(2): 86-97.
|
32 |
Shen YB, Tu T, Yi BC, et al. Electrospun acid-neutralizing fibers for the amelioration of inflammatory response[J]. Acta Biomater, 2019, 97: 200-215.
|
33 |
Yang DJ, Chen F, Xiong ZC, et al. Tissue anti-adhesion potential of biodegradable PELA electrospun membranes[J]. Acta Biomater, 2009, 5(7): 2467-2474.
|
34 |
Jiang SC, Zhao X, Chen S, et al. Down-regulating ERK1/2 and SMAD2/3 phosphorylation by physical barrier of celecoxib-loaded electrospun fibrous membranes prevents tendon adhesions[J]. Biomaterials, 2014, 35(37): 9920-9929.
|
35 |
Li LF, Zheng XY, Fan DP, et al. Release of celecoxib from a bi-layer biomimetic tendon sheath to prevent tissue adhesion[J]. Mater Sci Eng C Mater Biol Appl, 2016, 61: 220-226.
|
36 |
Ishiyama N, Moro T, Ohe T, et al. Reduction of Peritendinous adhesions by hydrogel containing biocompatible phospholipid polymer MPC for tendon repair[J]. J Bone Joint Surg Am, 2011, 93(2): 142-149.
|
37 |
Kuo SM, Chang SJ, Wang HY, et al. Evaluation of the ability of xanthan gum/gellan gum/hyaluronan hydrogel membranes to prevent the adhesion of postrepaired tendons[J]. Carbohydr Polym, 2014, 114: 230-237.
|
38 |
Meier Bürgisser G, Calcagni M, Müller A, et al. Prevention of peritendinous adhesions using an electrospun DegraPol polymer tube: a histological, ultrasonographic, and biomechanical study in rabbits[J]. Biomed Res Int, 2014, 2014: 656240.
|
39 |
梅宝珊, 尹忠祥, 方月娥. 接枝水凝胶硅橡胶薄膜骨科防粘连60例应用分析[J]. 安徽医学, 1997, 18(2): 1-2.
|