1 |
Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis[J]. Circ Res, 2016, 119(1): 91-112.
|
2 |
Maeda H, Kami D, Maeda R, et al. TAT-dextran-mediated mitochondrial transfer enhances recovery from models of reperfusion injury in cultured cardiomyocytes[J]. J Cell Mol Med, 2020, 24(9): 5007-5020.
|
3 |
Chouchani ET, Pell VR, Gaude E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS[J]. Nature, 2014, 515(7527): 431-435.
|
4 |
Kasai, Shimizu S, Tatara Y, et al. Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology[J]. Biomolecules, 2020, 10(2): E320.
|
5 |
Bertero E, Maack C. Calcium signaling and reactive oxygen species in mitochondria[J]. Circ Res, 2018, 122(10): 1460-1478.
|
6 |
Giorgio M, Migliaccio E, Orsini F, et al. Electron transfer between cytochrome c and P66SHC generates reactive oxygen species that trigger mitochondrial apoptosis[J]. Cell, 2005, 122(2): 221-233.
|
7 |
Boengler K, Bornbaum J, Schlüter KD, et al. P66SHC and its role in ischemic cardiovascular diseases[J]. Basic Res Cardiol, 2019, 114(4): 29.
|
8 |
Xiao YJ, Xia JJ, Cheng JQ, et al. Inhibition of S-adenosylhomocysteine hydrolase induces endothelial dysfunction via epigenetic regulation of P66SHC-mediated oxidative stress pathway[J]. Circulation, 2019, 139(19): 2260-2277.
|
9 |
Wang JN, Yang Q, Yang C, et al. Smad3 promotes AKI sensitivity in diabetic mice via interaction with p53 and induction of NOX4-dependent ROS production[J]. Redox Biol, 2020, 32: 101479.
|
10 |
Matsushima S, Kuroda J, Ago T, et al. Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1α and upregulation of peroxisome proliferator-activated receptor-α[J]. Circ Res, 2013, 112(8): 1135-1149.
|
11 |
Zhang YX, Murugesan P, Huang K, et al. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets[J]. Nat Rev Cardiol, 2020, 17(3): 170-194.
|
12 |
Siu KL, Lotz C, Ping P, et al. Netrin-1 abrogates ischemia/reperfusion-induced cardiac mitochondrial dysfunction via nitric oxide-dependent attenuation of NOX4 activation and recoupling of NOS[J]. J Mol Cell Cardiol, 2015, 78: 174-185.
|
13 |
Jannetti SA, Zeglis BM, Zalutsky MR, et al. Poly(ADP-ribose)polymerase (PARP) inhibitors and radiation therapy[J]. Front Pharmacol, 2020, 11: 170.
|
14 |
Hocsak E, Szabo V, Kalman N, et al. PARP inhibition protects mitochondria and reduces ROS production via PARP-1-ATF4-MKP-1-MAPK retrograde pathway[J]. Free Radic Biol Med, 2017, 108: 770-784.
|
15 |
Di Lisa F, Carpi A, Giorgio V, et al. The mitochondrial permeability transition pore and cyclophilin D in cardioprotection[J]. Biochim Biophys Acta, 2011, 1813(7): 1316-1322.
|
16 |
Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection[J]. Free Radic Biol Med, 2018, 117: 76-89.
|
17 |
Shimizu Y, Lambert JP, Nicholson CK, et al. DJ-1 protects the heart against ischemia-reperfusion injury by regulating mitochondrial fission[J]. J Mol Cell Cardiol, 2016, 97: 56-66.
|
18 |
Akbulut A, Keseroglu BB, Koca G, et al. Scintigraphic evaluation of renoprotective effects of coenzyme Q10 in a rat renal ischemia-reperfusion injury[J]. Nucl Med Commun, 2019, 40(10): 1011-1021.
|
19 |
Khan A, Johnson DK, Carlson S, et al. NT-pro BNP predicts myocardial injury post-vascular surgery and is reduced with CoQ10: a randomized double-blind trial[J]. Ann Vasc Surg, 2020, 64: 292-302.
|
20 |
Adlam VJ, Harrison JC, Porteous CM, et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury[J]. FASEB J, 2005, 19(9): 1088-1095.
|
21 |
Machiraju P, Wang X, Sabouny R, et al. SS-31 peptide reverses the mitochondrial fragmentation present in fibroblasts from patients with DCMA, a mitochondrial cardiomyopathy[J]. Front Cardiovasc Med, 2019, 6: 167.
|
22 |
Cho J, Won K, Wu D, et al. Potent mitochondria-targeted peptides reduce myocardial infarction in rats[J]. Coron Artery Dis, 2007, 18(3): 215-220.
|
23 |
Cung TT, Morel O, Cayla G, et al. Cyclosporine before PCI in patients with acute myocardial infarction[J]. N Engl J Med, 2015, 373(11): 1021-1031.
|
24 |
Wang M, Liu S, Wang H, et al. Morphine post-conditioning-induced up-regulation of lncRNA TINCR protects cardiomyocytes from ischemia-reperfusion injury via inhibiting degradation and ubiquitination of FGF1[J]. QJM, 2020, 113(12): 859-869.
|
25 |
Zi C, Zhang C, Yang Y, et al. Penehyclidine hydrochloride protects against anoxia/reoxygenation injury in cardiomyocytes through ATP-sensitive potassium channels, and the Akt/GSK-3β and Akt/mTOR signaling pathways[J]. Cell Biol Int, 2020, 44(6): 1353-1362.
|
26 |
Mao ZJ, Lin H, Hou JW, et al. A meta-analysis of resveratrol protects against myocardial ischemia/reperfusion injury: evidence from small animal studies and insight into molecular mechanisms[J]. Oxid Med Cell Longev, 2019, 2019: 5793867.
|
27 |
Dyck G, Raj P, Zieroth S, et al. The effects of resveratrol in patients with cardiovascular disease and heart failure: a narrative review[J]. Int J Mol Sci, 2019, 20(4): 904.
|
28 |
Yamamoto T, Byun J, Zhai P, et al. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion[J]. PLoS One, 2014, 9(6): e98972.
|