1 |
Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis[J]. Nature, 2011, 473(7347): 298-307.
|
2 |
Melincovici CS, Boşca AB, Şuşman S, et al. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis[J]. Revue Roumaine De Morphol et Embryol, 2018, 59(2): 455-467.
|
3 |
Simons M, Gordon E, Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling[J]. Nat Rev Mol Cell Biol, 2016, 17(10): 611-625.
|
4 |
Chung AS, Ferrara N. Developmental and pathological angiogenesis[J]. Annu Rev Cell Dev Biol, 2011, 27: 563-584.
|
5 |
Claesson-Welsh L, Welsh M. VEGFA and tumour angiogenesis[J]. J Intern Med, 2013, 273(2): 114-127.
|
6 |
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297.
|
7 |
Michlewski G, Cáceres JF. Post-transcriptional control of miRNA biogenesis[J]. RNA, 2019, 25(1): 1-16.
|
8 |
Peng Y, Croce CM. The role of microRNAs in human cancer[J]. Signal Transduct Target Ther, 2016, 1: 15004.
|
9 |
Zhao Z, Sun W, Guo ZY, et al. Mechanisms of lncRNA/microRNA interactions in angiogenesis[J]. Life Sci, 2020, 254: 116900.
|
10 |
Wang SY, Chen JH, Garcia SP, et al. A dynamic and integrated epigenetic program at distal regions orchestrates transcriptional responses to VEGFA[J]. Genome Res, 2019, 29(2): 193-207.
|
11 |
Anders S, McCarthy DJ, Chen YS, et al. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor[J]. Nat Protoc, 2013, 8(9): 1765-1786.
|
12 |
Blazek AD, Nam J, Gupta R, et al. Exercise-driven metabolic pathways in healthy cartilage[J]. Osteoarthritis Cartilage, 2016, 24(7): 1210-1222.
|
13 |
Feng YH, Tsao CJ. Emerging role of microRNA-21 in cancer[J]. Biomed Rep, 2016, 5(4): 395-402.
|
14 |
Luo M, Tan XY, Mu L, et al. MiRNA-21 mediates the antiangiogenic activity of metformin through targeting PTEN and SMAD7 expression and PI3K/AKT pathway[J]. Sci Rep, 2017, 7: 43427.
|
15 |
Celic T, Metzinger-Le Meuth V, Six I, et al. The miR-221/222 cluster is a key player in vascular biology via the fine-tuning of endothelial cell physiology[J]. Curr Vasc Pharmacol, 2017, 15(1): 40-46.
|
16 |
Li XH, Zhang Y, Shi YQ, et al. MicroRNA-107, an oncogene microRNA that regulates tumour invasion and metastasis by targeting DICER1 in gastric cancer[J]. J Cell Mol Med, 2011, 15(9): 1887-1895.
|
17 |
Chen JJ, Zhou X, Xiao QR, et al. MiR-107 suppresses cell proliferation and tube formation of Ewing sarcoma cells partly by targeting HIF-1β[J]. Hum Cell, 2018, 31(1): 42-49.
|
18 |
Chen L, Li ZY, Xu SY, et al. Upregulation of miR-107 inhibits glioma angiogenesis and VEGF expression[J]. Cell Mol Neurobiol, 2016, 36(1): 113-120.
|
19 |
Vishnoi A, Rani S. MiRNA biogenesis and regulation of diseases: an overview[J]. Methods Mol Biol, 2017, 1509: 1-10.
|
20 |
Hydbring P, Badalian-Very G. Clinical applications of microRNAs[J]. F1000Research, 2013, 2: 136.
|
21 |
Garrett-Sinha LA. Review of Ets1 structure, function, and roles in immunity[J]. Cell Mol Life Sci, 2013, 70(18): 3375-3390.
|
22 |
Chen J, Fu Y, Day DS, et al. VEGF amplifies transcription through ETS1 acetylation to enable angiogenesis[J]. Nat Commun, 2017, 8(1): 383.
|
23 |
Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAPK signalling in fibroblasts[J]. Nature, 2008, 456(7224): 980-984.
|
24 |
Poliseno L, Tuccoli A, Mariani L, et al. MicroRNAs modulate the angiogenic properties of HUVECs[J]. Blood, 2006, 108(9): 3068-3071.
|
25 |
Felli N, Fontana L, Pelosi E, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation[J]. Proc Natl Acad Sci USA, 2005, 102(50): 18081-18086.
|
26 |
Fiedler J, Jazbutyte V, Kirchmaier BC, et al. MicroRNA-24 regulates vascularity after myocardial infarction[J]. Circulation, 2011, 124(6): 720-730.
|
27 |
李洁, 秦性良, 邵宁生. MicroRNA及其靶基因的时空特异性与动态变化[J]. 生物化学与生物物理进展, 2013, 40(7): 617-626.
|
28 |
Mukhopadhyay D, Knebelmann B, Cohen HT, et al. The von Hippel-Lindau tumor suppressor gene product interacts with Sp1 to repress vascular endothelial growth factor promoter activity[J]. Mol Cell Biol, 1997, 17(9): 5629-5639.
|
29 |
Chen Z, Lai TC, Jan YH, et al. Hypoxia-responsive miRNAs target argonaute 1 to promote angiogenesis[J]. J Clin Invest, 2013, 123(3): 1057-1067.
|
30 |
Chen PS, Su JL, Cha ST, et al. miR-107 promotes tumor progression by targeting the let-7 microRNA in mice and humans[J]. J Clin Invest, 2017, 127(3): 1116.
|
31 |
Wu Q, Yang Z, An Y, et al. MiR-19a/b modulate the metastasis of gastric cancer cells by targeting the tumour suppressor MXD1[J]. Cell Death Dis, 2014, 5: e1144.
|
32 |
Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis[J]. J Clin Oncol, 2005, 23(5): 1011-1027.
|
33 |
Shiojima I, Walsh K. Role of Akt signaling in vascular homeostasis and angiogenesis[J]. Circ Res, 2002, 90(12): 1243-1250.
|
34 |
Wilhelm K, Happel K, Eelen G, et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium[J]. Nature, 2016, 529(7585): 216-220.
|
35 |
Jayson GC, Kerbel R, Ellis LM, et al. Antiangiogenic therapy in oncology: current status and future directions[J]. Lancet, 2016, 388(10043): 518-529.
|