1 |
Di Maira T, Little EC, Berenguer M. Immunosuppression in liver transplant[J]. Best Pract Res Clin Gastroenterol, 2020, 46-47: 101681.
|
2 |
Ivulich S, Westall G, Dooley M, et al. The evolution of lung transplant immunosuppression[J]. Drugs, 2018, 78(10): 965-982.
|
3 |
Lim MA, Kohli J, Bloom RD. Immunosuppression for kidney transplantation: where are we now and where are we going?[J]. Transplant Rev (Orlando), 2017, 31(1): 10-17.
|
4 |
Ericson JE, Zimmerman KO, Gonzalez D, et al. A systematic literature review approach to estimate the therapeutic index of selected immunosuppressant drugs after renal transplantation[J]. Ther Drug Monit, 2017, 39(1): 13-20.
|
5 |
Johnston A. Equivalence and interchangeability of narrow therapeutic index drugs in organ transplantation[J]. Eur J Hosp Pharm, 2013, 20(5): 302-307.
|
6 |
Adams DH, Sanchez-Fueyo A, Samuel D. From immunosuppression to tolerance[J]. J Hepatol, 2015, 62(1): S170-S185.
|
7 |
Posfay-Barbe KM, Baudet H, McLin VA, et al. Immunosuppressant therapeutic drug monitoring and trough level stabilisation after paediatric liver or kidney transplantation[J]. Swiss Med Wkly, 2019, 149: w20156.
|
8 |
Strobbe G, Pannier D, Sakji I, et al. Advantages of everolimus therapeutic drug monitoring in oncology when drug-drug interaction is suspected: a case report[J]. J Oncol Pharm Pract, 2020, 26(7): 1743-1749.
|
9 |
Sommerer C, Suwelack B, Dragun D, et al. An open-label, randomized trial indicates that everolimus with tacrolimus or cyclosporine is comparable to standard immunosuppression in de novo kidney transplant patients[J]. Kidney Int, 2019, 96(1): 231-244.
|
10 |
Chen L, Song Q, Chen Y, et al. Tailored reconstituted lipoprotein for site-specific and mitochondria-targeted cyclosporine A delivery to treat traumatic brain injury[J]. ACS Nano, 2020, 14(6): 6636-6648.
|
11 |
Sottani C, Grignani E, Mazzucchelli S, et al. Development and validation of a simple and versatile method for the quantification of everolimus loaded in H-ferritin nanocages using UHPLC-MS/MS[J]. J Pharm Biomed Anal, 2020, 191: 113644.
|
12 |
Freudenberger K, Hilbig U, Gauglitz G. Recent advances in therapeutic drug monitoring of immunosuppressive drugs[J]. Trac Trends Anal Chem, 2016, 79: 257-268.
|
13 |
Zhang Y, Zhang R. Recent advances in analytical methods for the therapeutic drug monitoring of immunosuppressive drugs[J]. Drug Test Anal, 2018, 10(1): 81-94.
|
14 |
Li W, Li R, Liu H, et al. A comparison of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and enzyme-multiplied immunoassay technique (EMIT) for the determination of the cyclosporin A concentration in whole blood from Chinese patients[J]. Biosci Trends, 2017, 11(4): 475-482.
|
15 |
Becker A, Backman JT, Itkonen O. Comparison of LC-MS/MS and chemiluminescent immunoassays for immunosuppressive drugs reveals organ dependent variation in blood cyclosporine a concentrations[J]. Clin Chim Acta, 2020, 508: 22-27.
|
16 |
Mei S, Wang J, Chen D, et al. Simultaneous determination of cyclosporine and tacrolimus in human whole blood by ultra-high performance liquid chromatography tandem mass spectrometry and comparison with a chemiluminescence microparticle immunoassay[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2018, 1087-1088: 36-42.
|
17 |
Krnáč D, Reiffová K, Rolinski B. A new HPLC-MS/MS method for simultaneous determination of cyclosporine A, tacrolimus, sirolimus and everolimus for routine therapeutic drug monitoring[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2019, 1128: 121772.
|
18 |
Gong ZS, Wu ZH, Xu SX, et al. A high-throughput LC-MS/MS method for the quantification of four immunosu-ppressants drugs in whole blood[J]. Clin Chim Acta, 2019, 498: 21-26.
|
19 |
Pablo AH, Breaud AR, Clarke W. Analysis of immunosuppressant drugs in whole blood by liquid chromatography-tandem mass spectrometry (LC-MS/MS)[J]. Curr Protoc Toxicol, 2020, 84(1): e92.
|
20 |
Brase RA, Spink DC. Enhanced sensitivity for the analysis of perfluoroethercarboxylic acids using LC-ESI-MS/MS: effects of probe position, mobile phase additive, and capillary voltage[J]. J Am Soc Mass Spectrom, 2020, 31(10): 2124-2132.
|
21 |
Kruve A, Kaupmees K. Adduct formation in ESI/MS by mobile phase additives[J]. J Am Soc Mass Spectrom, 2017, 28(5): 887-894.
|
22 |
Liang Y, Guan T, Zhou Y, et al. Effect of mobile phase additives on qualitative and quantitative analysis of ginsenosides by liquid chromatography hybrid quadrupole-time of flight mass spectrometry[J]. J Chromatogr A, 2013, 1297: 29-36.
|
23 |
Soleilhac A, Dagany X, Dugourd P, et al. Correlating droplet size with temperature changes in electrospray source by optical methods[J]. Anal Chem, 2015, 87(16): 8210-8217.
|
24 |
Kruve A. Influence of mobile phase, source parameters and source type on electrospray ionization efficiency in negative ion mode[J]. J Mass Spectrom, 2016, 51(8): 596-601.
|
25 |
Xu JD, Xu MZ, Zhou SS, et al. Effects of chromatographic conditions and mass spectrometric parameters on the ionization and fragmentation of triterpene saponins of Ilex asprella in liquid chromatography-mass spectrometry analysis[J]. J Chromatogr A, 2019, 1608: 460418.
|
26 |
Bittersohl H, Herbinger J, Wen M, et al. Simultaneous determination of protein-unbound cyclosporine A and mycophenolic acid in kidney transplant patients using liquid chromatography-tandem mass spectrometry[J]. Ther Drug Monit, 2017, 39(3): 211-219.
|
27 |
Silvester S. Mobile phase pH and organic modifier in reversed-phase LC-ESI-MS bioanalytical methods: assessment of sensitivity, chromatography and correlation of retention time with in silico logD predictions[J]. Bioanalysis, 2013, 5(22): 2753-2770.
|