1 |
CAO M M, LI H, SUN D Q, et al. Cancer burden of major cancers in China: a need for sustainable actions[J]. Cancer Commun (Lond), 2020, 40(5): 205-210.
|
2 |
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30.
|
3 |
PERUMAL V, SIVAKUMAR P M, ZARRABI A, et al. Near infra-red polymeric nanoparticle based optical imaging in cancer diagnosis[J]. J Photochem Photobiol B, 2019, 199: 111630.
|
4 |
LUO S L, ZHANG E L, SU Y P, et al. A review of NIR dyes in cancer targeting and imaging[J]. Biomaterials, 2011, 32(29): 7127-7138.
|
5 |
LI H D, KIM D, YAO Q C, et al. Activity-based NIR enzyme fluorescent probes for the diagnosis of tumors and image-guided surgery[J]. Angew Chem Int Ed Engl, 2021, 60(32): 17268-17289.
|
6 |
ZHOU Z X, LU Z R. Molecular imaging of the tumor microenvironment[J]. Adv Drug Deliv Rev, 2017, 113: 24-48.
|
7 |
WEBB B A, CHIMENTI M, JACOBSON M P, et al. Dysregulated pH: a perfect storm for cancer progression[J]. Nat Rev Cancer, 2011, 11(9): 671-677.
|
8 |
BOEDTKJER E, BUNCH L, PEDERSEN S F. Physiology, pharmacology and pathophysiology of the pH regulatory transport proteins NHE1 and NBCn1: similarities, differences, and implications for cancer therapy[J]. Curr Pharm Des, 2012, 18(10): 1345-1371.
|
9 |
ANDERSEN A P, MOREIRA J M A, PEDERSEN S F. Interactions of ion transporters and channels with cancer cell metabolism and the tumour microenvironment[J]. Philos Trans R Soc Lond B Biol Sci, 2014, 369(1638): 20130098.
|
10 |
BOEDTKJER E, PEDERSEN S F. The acidic tumor microenvironment as a driver of cancer[J]. Annu Rev Physiol, 2020, 82: 103-126.
|
11 |
FRY D R, BOBBITT D R. Investigation of dynamically modified optical-fiber sensors for pH sensing at the extremes of the pH scale[J]. Microchem J, 2001, 69(2): 25-33.
|
12 |
TANG X, ZHU Z, WANG Y, et al. A dual site controlled probe for fluorescent monitoring of intracellular pH and colorimetric monitoring of Cu2+[J]. Sens Actuat B Chem, 2018, 270: 35-44.
|
13 |
ZHU H, FAN J L, DU J J, et al. Fluorescent probes for sensing and imaging within specific cellular organelles[J]. Acc Chem Res, 2016, 49(10): 2115-2126.
|
14 |
LEE M H, PARK N, YI C, et al. Mitochondria-immobilized pH-sensitive off-on fluorescent probe[J]. J Am Chem Soc, 2014, 136(40): 14136-14142.
|
15 |
JIN D, WANG B W, HOU Y Q, et al. Novel near-infrared pH-sensitive cyanine-based fluorescent probes for intracellular pH monitoring[J]. Dyes Pigments, 2019, 170: 107612.
|
16 |
ZHENG X H, XING D, ZHOU F F, et al. Indocyanine green-containing nanostructure as near infrared dual-functional targeting probes for optical imaging and photothermal therapy[J]. Mol Pharm, 2011, 8(2): 447-456.
|
17 |
MA Y, TONG S, BAO G, et al. Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy[J]. Biomaterials, 2013, 34(31): 7706-7714.
|
18 |
TANG B, LIU X, XU K, et al. A dual near-infrared pH fluorescent probe and its application in imaging of HepG2 cells[J]. Chem Commun (Camb), 2007(36): 3726-3728.
|
19 |
ZHAO X, WEI R S, CHEN L G, et al. Glucosamine modified near-infrared cyanine as a sensitive colorimetric fluorescent chemosensor for aspartic and glutamic acid and its applications[J]. New J Chem, 2014, 38(10): 4791-4798.
|
20 |
MU H Y, MIKI K, HARADA H, et al. pH-activatable cyanine dyes for selective tumor imaging using near-infrared fluorescence and photoacoustic modalities[J]. ACS Sens, 2021, 6(1): 123-129.
|
21 |
ZHANG Z, ACHILEFU S. Design, synthesis and evaluation of near-infrared fluorescent pH indicators in a physiologically relevant range[J]. Chem Commun (Camb), 2005(47): 5887-5889.
|
22 |
YU H, SUN M T, ZHANG K, et al. A reversible near-infrared pH probes for optical measurements of pH in complete water system and living cells[J]. Sens Actuat B Chem, 2015, 219: 294-300.
|
23 |
TANG B, YU F B, LI P, et al. A near-infrared neutral pH fluorescent probe for monitoring minor pH changes: imaging in living HepG2 and HL-7702 cells[J]. J Am Chem Soc, 2009, 131(8): 3016-3023.
|
24 |
MYOCHIN T, KIYOSE K, HANAOKA K, et al. Rational design of ratiometric near-infrared fluorescent pH probes with various pKa values, based on aminocyanine[J]. J Am Chem Soc, 2011, 133(10): 3401-3409.
|
25 |
SHI Y X, MENG X C, YANG H R, et al. Lysosome-specific sensing and imaging of pH variations in vitro and in vivo utilizing a near-infrared boron complex[J]. J Mater Chem B, 2019, 7(22): 3569-3575.
|
26 |
VAN DER WAL S, KUIL J, VALENTIJN A R P M, et al. Synthesis and systematic evaluation of symmetric sulfonated centrally CC bonded cyanine near-infrared dyes for protein labelling[J]. Dyes Pigments, 2016, 132: 7-19.
|
27 |
MASKASKY J E. Molecular orientation of individual J aggregates on gelatin-grown AgBr tabular microcrystals[J]. Langmuir, 1991, 7(2): 407-421.
|
28 |
王伟, 姚祖光. 含N-烷基吲哚环方酸菁染料的合成及性能[J]. 感光科学与光化学, 1997, 15(4): 321-326.
|
|
WANG W, YAO Z G. Synthesis and properties of squarylium cyanine dyes containing N-alkyl indole[J]. Photogaraphic Sci Photoch, 1997, 15(4): 321-326.
|
29 |
CAO J, WAN S N, TIAN J M, et al. Fast clearing RGD-based near-infrared fluorescent probes for in vivo tumor diagnosis[J]. Contrast Media Mol Imaging, 2012, 7(4): 390-402.
|
30 |
JEONG C, NOH I, REJINOLD N S, et al. Self-assembled supramolecular bilayer nanoparticles composed of near-infrared dye as a theranostic nanoplatform to encapsulate hydrophilic drugs effectively[J]. ACS Biomater Sci Eng, 2020, 6(1): 474-484.
|