
上海交通大学学报(医学版) ›› 2022, Vol. 42 ›› Issue (10): 1474-1481.doi: 10.3969/j.issn.1674-8115.2022.10.014
收稿日期:2022-03-28
接受日期:2022-09-15
出版日期:2022-10-28
发布日期:2022-12-02
通讯作者:
俞焙秦,电子信箱:yubeiqin@126.com。作者简介:朱 楠(1997—),女,硕士生;电子信箱:znzhunan@sjtu.edu.cn。
基金资助:
ZHU Nan(
), LIU Bingya, YU Beiqin(
)
Received:2022-03-28
Accepted:2022-09-15
Online:2022-10-28
Published:2022-12-02
Contact:
YU Beiqin, E-mail: yubeiqin@126.com.Supported by:摘要:
肌盲样蛋白1(muscle blind-like protein 1,MBNL1)是一种RNA结合蛋白,其作为前体信使RNA(precursor mRNA,pre-mRNA)的可变剪接因子,在发育过程中起调节作用,有助于对特定转录集的转录后调控。MBNL1可以影响RNA成熟和表达过程的多个步骤,包括pre-mRNA的剪接、降解、RNA输出、稳定性维持、修饰和翻译等。MBNL1最早被认为是强直性肌营养不良发病机制的相关因子,随着研究的深入,其在多种非肿瘤性疾病以及肿瘤性疾病中的作用逐渐凸显。研究表明,MBNL1在多种疾病中表达异常,并且与恶性肿瘤如胃癌、结直肠癌、乳腺癌、前列腺癌、脑胶质瘤、肺癌、血液系统肿瘤等的发生、发展以及转移密切相关。由于细胞种类和发育环境的不同,正常细胞和肿瘤细胞中MBNL1蛋白水平的变化具有多样性。MBNL1既可作为转录激活因子促进肿瘤的发生与发展,也可作为转录阻遏因子抑制肿瘤的生长、转移等过程,在恶性肿瘤的发病过程中发挥重要作用。该文就MBNL1在肿瘤发生发展中的分子机制、生物学特性及其在不同恶性肿瘤中的表达和功能进行综述,为肿瘤的靶向治疗及预后评估提供新的研究思路。
中图分类号:
朱楠, 刘炳亚, 俞焙秦. 肌盲样蛋白1在恶性肿瘤中作用的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(10): 1474-1481.
ZHU Nan, LIU Bingya, YU Beiqin. Advances in the role of muscle blind-like protein 1 in malignant tumors[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(10): 1474-1481.
| 1 | BEGEMANN G, PARICIO N, ARTERO R, et al. Muscleblind, a gene required for photoreceptor differentiation in Drosophila, encodes novel nuclear Cys3His-type zinc-finger-containing proteins[J]. Development, 1997, 124(21): 4321-4331. |
| 2 | TEPLOVA M, PATEL D J. Structural insights into RNA recognition by the alternative-splicing regulator muscleblind-like MBNL1[J]. Nat Struct Mol Biol, 2008, 15(12): 1343-1351. |
| 3 | HO T H, CHARLET B N, POULOS M G, et al. Muscleblind proteins regulate alternative splicing[J]. EMBO J, 2004, 23(15): 3103-3112. |
| 4 | FERNANDEZ-COSTA J M, LLAMUSI M B, GARCIA-LOPEZ A, et al. Alternative splicing regulation by Muscleblind proteins: from development to disease[J]. Biol Rev Camb Philos Soc, 2011, 86(4): 947-958. |
| 5 | WANG E T, CODY N A L, JOG S, et al. Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins[J]. Cell, 2012, 150(4): 710-724. |
| 6 | KANADIA R N, URBINATI C R, CRUSSELLE V J, et al. Developmental expression of mouse muscleblind genes Mbnl1, Mbnl2 and Mbnl3[J]. Gene Expr Patterns, 2003, 3(4): 459-462. |
| 7 | KONIECZNY P, STEPNIAK-KONIECZNA E, SOBCZAK K. MBNL proteins and their target RNAs, interaction and splicing regulation[J]. Nucleic Acids Res, 2014, 42(17): 10873-10887. |
| 8 | MASUDA A, ANDERSEN H S, DOKTOR T K, et al. CUGBP1 and MBNL1 preferentially bind to 3' UTRs and facilitate mRNA decay[J]. Sci Rep, 2012, 2: 209. |
| 9 | WANG E T, TALIAFERRO J M, LEE J A, et al. Dysregulation of mRNA localization and translation in genetic disease[J]. J Neurosci, 2016, 36(45): 11418-11426. |
| 10 | BATRA R, CHARIZANIS K, MANCHANDA M, et al. Loss of MBNL leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease[J]. Mol Cell, 2014, 56(2): 311-322. |
| 11 | GOERS E S, PURCELL J, VOELKER R B, et al. MBNL1 binds GC motifs embedded in pyrimidines to regulate alternative splicing[J]. Nucleic Acids Res, 2010, 38(7): 2467-2484. |
| 12 | TRAN H, GOURRIER N, LEMERCIER-NEUILLET C, et al. Analysis of exonic regions involved in nuclear localization, splicing activity, and dimerization of Muscleblind-like-1 isoforms[J]. J Biol Chem, 2011, 286(18): 16435-16446. |
| 13 | SZNAJDER Ł J, MICHALAK M, TAYLOR K, et al. Mechanistic determinants of MBNL activity[J]. Nucleic Acids Res, 2016, 44(21): 10326-10342. |
| 14 | PASCUAL M, VICENTE M, MONFERRER L, et al. The Muscleblind family of proteins: an emerging class of regulators of developmentally programmed alternative splicing[J]. Differentiation, 2006, 74(2/3): 65-80. |
| 15 | BROOK J D, MCCURRACH M E, HARLEY H G, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member[J]. Cell, 1992, 68(4): 799-808. |
| 16 | LIQUORI C L, RICKER K, MOSELEY M L, et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9[J]. Science, 2001, 293(5531): 864-867. |
| 17 | CHENG A W, SHI J H, WONG P, et al. Muscleblind-like 1 (Mbnl1) regulates pre-mRNA alternative splicing during terminal erythropoiesis[J]. Blood, 2014, 124(4): 598-610. |
| 18 | ARTERO R, PROKOP A, PARICIO N, et al. The muscleblind gene participates in the organization of Z-bands and epidermal attachments of Drosophila muscles and is regulated by Dmef2[J]. Dev Biol, 1998, 195(2): 131-143. |
| 19 | KANADIA R N, JOHNSTONE K A, MANKODI A, et al. A muscleblind knockout model for myotonic dystrophy[J]. Science, 2003, 302(5652): 1978-1980. |
| 20 | DAVID C J, MANLEY J L. Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged[J]. Genes Dev, 2010, 24(21): 2343-2364. |
| 21 | OLTEAN S, BATES D O. Hallmarks of alternative splicing in cancer[J]. Oncogene, 2014, 33(46): 5311-5318. |
| 22 | BARALLE F E, GIUDICE J. Alternative splicing as a regulator of development and tissue identity[J]. Nat Rev Mol Cell Biol, 2017, 18(7): 437-451. |
| 23 | SEBESTYÉN E, SINGH B, MIÑANA B, et al. Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks[J]. Genome Res, 2016, 26(6): 732-744. |
| 24 | FISH L, PENCHEVA N, GOODARZI H, et al. Muscleblind-like 1 suppresses breast cancer metastatic colonization and stabilizes metastasis suppressor transcripts[J]. Genes Dev, 2016, 30(4): 386-398. |
| 25 | TANG L, ZHAO P, KONG D L. Muscleblind‑like 1 destabilizes Snail mRNA and suppresses the metastasis of colorectal cancer cells via the Snail/E‑cadherin axis[J]. Int J Oncol, 2019, 54(3): 955-965. |
| 26 | ZHENG Z, ZHU H B, WAN Q W, et al. LGN regulates mitotic spindle orientation during epithelial morphogenesis[J]. J Cell Biol, 2010, 189(2): 275-288. |
| 27 | HAN H, IRIMIA M, ROSS P J, et al. MBNL proteins repress ES-cell-specific alternative splicing and reprogramming[J]. Nature, 2013, 498(7453): 241-245. |
| 28 | GABUT M, SAMAVARCHI-TEHRANI P, WANG X C, et al. An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming[J]. Cell, 2011, 147(1): 132-146. |
| 29 | VENABLES J P, LAPASSET L, GADEA G, et al. MBNL1 and RBFOX2 cooperate to establish a splicing programme involved in pluripotent stem cell differentiation[J]. Nat Commun, 2013, 4: 2480. |
| 30 | JANGI M, SHARP P A. Building robust transcriptomes with master splicing factors[J]. Cell, 2014, 159(3): 487-498. |
| 31 | FRIEDMANN-MORVINSKI D, VERMA I M. Dedifferentiation and reprogramming: origins of cancer stem cells[J]. EMBO Rep, 2014, 15(3): 244-253. |
| 32 | SALOMONIS N, NELSON B, VRANIZAN K, et al. Alternative splicing in the differentiation of human embryonic stem cells into cardiac precursors[J]. PLoS Comput Biol, 2009, 5(11): e1000553. |
| 33 | RAY D, YUN Y C, IDRIS M, et al. A tumor-associated splice-isoform of MAP2K7 drives dedifferentiation in MBNL1-low cancers via JNK activation[J]. Proc Natl Acad Sci U S A, 2020, 117(28): 16391-16400. |
| 34 | RAY D, EPSTEIN D M. Tumorigenic de-differentiation: the alternative splicing way[J]. Mol Cell Oncol, 2020, 7(6): 1809959. |
| 35 | MARTINEZ N M, AGOSTO L, QIU J S, et al. Widespread JNK-dependent alternative splicing induces a positive feedback loop through CELF2-mediated regulation of MKK7 during T-cell activation[J]. Genes Dev, 2015, 29(19): 2054-2066. |
| 36 | ASHWAL-FLUSS R, MEYER M, PAMUDURTI N R, et al. circRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014, 56(1): 55-66. |
| 37 | 陈学英, 许萍萍, 代娟娟, 等. 环形RNA研究进展[J]. 生命科学, 2015, 27(9): 1125-1132. |
| CHEN X Y, XU P P, DAI J J, et al. Research advances on circular RNAs[J]. Chin Bul Life Sci, 2015, 27(9): 1125-1132. | |
| 38 | 张晓黎, 张颖, 陈国通, 等. 环状RNA在妇科恶性肿瘤中的研究[J]. 医学信息, 2020, 33(3): 38-42. |
| ZHANG X L, ZHANG Y, CHEN G T, et al. Study of circular RNA in gynecological malignancies[J]. Med Inf, 2020, 33(3): 38-42. | |
| 39 | 翁韬, 李桑, 陈雅露, 等. 环状RNA的功能特性与胃癌的发生及诊断[J]. 生命的化学, 2019, 39(4): 665-672. |
| WENG T, LI S, CHEN Y L, et al. Functional characteristics of circular RNAs and the occurrence and diagnosis of gastric cancer[J]. Chem Life, 2019, 39(4): 665-672. | |
| 40 | 郝文娟, 沈志森, 李群, 等. 环状RNA在头颈部肿瘤中的作用[J]. 中国细胞生物学学报, 2017, 39(1): 97-105. |
| HAO W J, SHEN Z S, LI Q, et al. Roles of circular RNA in head and neck cancers[J]. Chin J Cell Biol, 2017, 39(1): 97-105. | |
| 41 | KRISTENSEN L S, ANDERSEN M S, STAGSTED L V W, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675-691. |
| 42 | 徐昊, 方梦蝶, 李超, 等. 新型肿瘤靶标环状RNA的研究进展[J]. 中国医学科学院学报, 2021,43(3):435-444. |
| XU H, FANG M D, LI C, et al. Progress in research on the novel tumor marker circRNA[J]. Acta Acad Med Sin, 2021, 43(3): 435-444. | |
| 43 | PAMUDURTI N R, BARTOK O, JENS M, et al. Translation of CircRNAs[J]. Mol Cell, 2017, 66(1): 9-21.e7. |
| 44 | RYAN B M, ROBLES A I, HARRIS C C. Genetic variation in microRNA networks: the implications for cancer research[J]. Nat Rev Cancer, 2010, 10(6): 389-402. |
| 45 | TANG R, QI Q H, WU R R, et al. The polymorphic terminal-loop of pre-miR-1307 binding with MBNL1 contributes to colorectal carcinogenesis via interference with Dicer1 recruitment[J]. Carcinogenesis, 2015, 36(8): 867-875. |
| 46 | CHEN W Q, ZHENG R S, BAADE P D, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132. |
| 47 | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. |
| 48 | CHENG S S, RAY D, LEE R T H, et al. A functional network of gastric-cancer-associated splicing events controlled by dysregulated splicing factors[J]. NAR Genom Bioinform, 2020, 2(2): lqaa013. |
| 49 | 庞立. 基于差异共表达网络探索胃癌的发病机制及ALEX1在胃癌中的生物学功能及其机制研究[D]. 上海: 上海交通大学, 2017. |
| PANG L. Differential coexpression analysis in gastric carcinogenesis& the role and molecular mechanism of ALEX1 in progression of gastric cancer[D]. Shanghai: Shanghai Jiao Tong University, 2017. | |
| 50 | The Human Protein Atlas: Expression of MBNL1 in cancer[EB/OL].[2022-03-01]. https://www.proteinatlas.org/ENSG00000152601‐MBNL1/ pathology. |
| 51 | SEMENZA G L. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology[J]. Annu Rev Pathol, 2014, 9: 47-71. |
| 52 | HUAN L, GUO T A, WU Y J, et al. Hypoxia induced LUCAT1/PTBP1 axis modulates cancer cell viability and chemotherapy response[J]. Mol Cancer, 2020, 19(1): 11. |
| 53 | TABAGLIO T, LOW D H, TEO W K L, et al. MBNL1 alternative splicing isoforms play opposing roles in cancer[J]. Life Sci Alliance, 2018, 1(5): e201800157. |
| 54 | LEE J, KOTLIAROVA S, KOTLIAROV Y, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines[J]. Cancer Cell, 2006, 9(5): 391-403. |
| 55 | SINGH S K, CLARKE I D, TERASAKI M, et al. Identification of a cancer stem cell in human brain tumors[J]. Cancer Res, 2003, 63(18): 5821-5828. |
| 56 | LATHIA J D, MACK S C, MULKEARNS-HUBERT E E, et al. Cancer stem cells in glioblastoma[J]. Genes Dev, 2015, 29(12): 1203-1217. |
| 57 | BAR E E, LIN A, MAHAIRAKI V, et al. Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres[J]. Am J Pathol, 2010, 177(3): 1491-1502. |
| 58 | MALIK N, WANG X T, SHAH S, et al. Comparison of the gene expression profiles of human fetal cortical astrocytes with pluripotent stem cell derived neural stem cells identifies human astrocyte markers and signaling pathways and transcription factors active in human astrocytes[J]. PLoS One, 2014, 9(5): e96139. |
| 59 | FLEMING V A, GENG C Y, LADD A N, et al. Alternative splicing of the neurofibromatosis type 1 pre-mRNA is regulated by the muscleblind-like proteins and the CUG-BP and ELAV-like factors[J]. BMC Mol Biol, 2012, 13: 35. |
| 60 | VOSS D M, SLOAN A, SPINA R, et al. The alternative splicing factor, MBNL1, inhibits glioblastoma tumor initiation and progression by reducing hypoxia-induced stemness[J]. Cancer Res, 2020, 80(21): 4681-4692. |
| 61 | TEPLYUK N M, UHLMANN E J, GABRIELY G, et al. Therapeutic potential of targeting microRNA-10b in established intracranial glioblastoma: first steps toward the clinic[J]. EMBO Mol Med, 2016, 8(3): 268-287. |
| 62 | 茹琴, 李超英. miR-10b对脑胶质瘤恶性生物学行为的调控及其机制[J]. 中国肿瘤生物治疗杂志, 2018, 25(4): 376-381. |
| RU Q, LI C Y. Regulatory effect of miR-10b on the malignant biological behavior of glioma and its mechanism[J]. Chin J Cancer Biothe, 2018, 25(4): 376-381. | |
| 63 | YU H, XU Q H, LIU F, et al. Identification and validation of long noncoding RNA biomarkers in human non-small-cell lung carcinomas[J]. J Thorac Oncol, 2015, 10(4): 645-654. |
| 64 | LI P, XING W Q, XU J L, et al. microRNA-301b-3p downregulation underlies a novel inhibitory role of long non-coding RNA MBNL1-AS1 in non-small cell lung cancer[J]. Stem Cell Res Ther, 2019, 10(1): 144. |
| 65 | 刘俊霞, 王朝霞. 长非编码RNA在非小细胞肺癌治疗抵抗中的作用及机制研究进展[J]. 现代肿瘤医学, 2021, 29(24): 4414-4418. |
| LIU J X, WANG Z X. Research progress on the role and mechanism of long non-coding RNA in the therapeutic resistance of NSCLC cancer[J]. Modern Oncology, 2021, 29(24): 4414-4418. | |
| 66 | ROSS M E, MAHFOUZ R, ONCIU M, et al. Gene expression profiling of pediatric acute myelogenous leukemia[J]. Blood, 2004, 104(12): 3679-3687. |
| 67 | ARMSTRONG S A, STAUNTON J E, SILVERMAN L B, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia[J]. Nat Genet, 2002, 30(1): 41-47. |
| 68 | STAM R W, SCHNEIDER P, HAGELSTEIN J A P, et al. Gene expression profiling-based dissection of MLL translocated and MLL germline acute lymphoblastic leukemia in infants[J]. Blood, 2010, 115(14): 2835-2844. |
| 69 | ITSKOVICH S S, GURUNATHAN A, CLARK J, et al. MBNL1 regulates essential alternative RNA splicing patterns in MLL-rearranged leukemia[J]. Nat Commun, 2020, 11(1): 2369. |
| [1] | 木尔扎特·艾麦提, 张业骞, 刘涛, 白龙, 张浩宇, 倪博, 关玉静, 王书昌, 顾佳毅, 朱纯超, 夏翔, 张子臻. 机器人与腹腔镜辅助近端胃切除联合双肌瓣吻合治疗早期胃上部癌的近期效果对比[J]. 上海交通大学学报(医学版), 2025, 45(7): 874-882. |
| [2] | 汤开然, 冯成领, 韩邦旻. 基于单细胞测序与转录组测序构建M2巨噬细胞基因相关的前列腺癌预后模型[J]. 上海交通大学学报(医学版), 2025, 45(5): 549-561. |
| [3] | 张钲佳, 李小敏, 周鑫, 马海荣, 艾松涛. 高阶磁共振功能成像评估骨与软组织肿瘤价值初探[J]. 上海交通大学学报(医学版), 2025, 45(5): 585-596. |
| [4] | 张博源, 姚志荣. 紫外线诱导的DNA损伤促进皮肤恶性肿瘤发生的研究现状[J]. 上海交通大学学报(医学版), 2025, 45(2): 228-232. |
| [5] | PANDIT Roshan, 卢君瑶, 何立珩, 包玉洁, 季萍, 陈颖盈, 许洁, 王颖. 肿瘤坏死因子-α在新型冠状病毒感染合并肾损伤中的作用[J]. 上海交通大学学报(医学版), 2025, 45(1): 1-10. |
| [6] | 木司塔巴·木台力甫, 王俊杰, 钱云臻, 陈溯源, 邵达, 张志刚, 李冬雪. 预免疫策略结合mVenus-p27K-系统构建休眠肿瘤小鼠模型[J]. 上海交通大学学报(医学版), 2024, 44(9): 1104-1114. |
| [7] | 何蕊, 颜克鹏, 王静. 靶向髓源性抑制细胞的叶酸循环增强肿瘤免疫治疗效果研究[J]. 上海交通大学学报(医学版), 2024, 44(8): 1011-1022. |
| [8] | 胡飞, 蔡晓涵, 程睿, 季诗雨, 苗嘉欣, 朱晏, 范广建. 骨肉瘤免疫微环境及其免疫治疗临床转化研究进展[J]. 上海交通大学学报(医学版), 2024, 44(7): 814-821. |
| [9] | 张烨晟, 杨易静, 黄依雯, 施珑玙, 王曼媛, 陈思思. 肿瘤微环境免疫细胞调节肿瘤细胞耐药性的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(7): 830-838. |
| [10] | 李萍, 蒋惠如, 叶梦月, 王雅玉, 陈潇雨, 袁安彩, 徐文杰, 戴慧敏, 陈曦, 闫小响, 涂圣贤, 郑元琦, 张薇, 卜军. 基于上海社区老年人群队列的心血管疾病和恶性肿瘤的危险因素流行特征分析[J]. 上海交通大学学报(医学版), 2024, 44(5): 617-625. |
| [11] | 王梦婷, 陈怡楠, 轩辕欣阳, 袁海花. 肺癌恶性胸腔积液来源肿瘤细胞的小鼠PDX模型构建及实验验证[J]. 上海交通大学学报(医学版), 2024, 44(4): 435-443. |
| [12] | 刘林楠, 冯莉, 王龙, 刘嘉寅, 范志松. 多能蛋白聚糖在恶性肿瘤中的表达及生物学作用的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(4): 525-530. |
| [13] | 徐文晖, 杨畅, 李瑞卿, 卞京, 李夏伊, 郑磊贞. 干扰素调节因子3促结直肠癌细胞增殖与侵袭相关探索[J]. 上海交通大学学报(医学版), 2024, 44(3): 301-311. |
| [14] | 白雯会, 沈淑坤, 吴英理. 沙蟾毒精抗癌活性及相关机制的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(3): 385-392. |
| [15] | 刘美伶, 周亚兵, 王晓强. 儿童神经纤维瘤病1型颅内肿瘤性病变的治疗进展[J]. 上海交通大学学报(医学版), 2024, 44(3): 399-406. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||