上海交通大学学报(医学版) ›› 2022, Vol. 42 ›› Issue (6): 825-832.doi: 10.3969/j.issn.1674-8115.2022.06.019
• 综述 • 上一篇
收稿日期:
2022-03-02
接受日期:
2022-06-01
出版日期:
2022-06-28
发布日期:
2022-08-19
通讯作者:
马皎
E-mail:zhengshifan@sjtu.edu.cn;drjiaoma@shsmu.edu.cn
作者简介:
郑诗凡(1998—),女,硕士生;电子信箱:zhengshifan@sjtu.edu.cn。
基金资助:
Received:
2022-03-02
Accepted:
2022-06-01
Online:
2022-06-28
Published:
2022-08-19
Contact:
MA Jiao
E-mail:zhengshifan@sjtu.edu.cn;drjiaoma@shsmu.edu.cn
Supported by:
摘要:
无法彻底清除肿瘤干细胞(cancer stem cells,CSCs)被认为是肿瘤治疗过程中的一个巨大障碍。CSCs是一群存在于异质性肿瘤组织中的细胞亚群,它们具有自我更新和分化的潜能。作为一个功能性的概念,CSCs能够表现出启动肿瘤发生、抵抗放射治疗与化学治疗(化疗)以及导致肿瘤复发等恶性行为。有关CSCs多方面的研究已被陆续开展,包括特异性的细胞表面标志、自我更新信号通路以及表观遗传调控等,然而CSCs代谢却未得到足够的关注。基于现有的相关研究,该文综述了CSCs的能量和物质代谢特性,并从代谢角度探讨了CSCs在导致肿瘤治疗抗性与复发中的作用,同时还阐述了CSCs代谢与表观遗传调控的密切联系,并强调靶向CSCs代谢在肿瘤治疗中具有巨大的潜在价值。
中图分类号:
郑诗凡, 马皎. 肿瘤干细胞代谢在肿瘤发展中作用的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(6): 825-832.
ZHENG Shifan, MA Jiao. Research progress in the role of cancer stem cell metabolism in tumor development[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(6): 825-832.
1 | KRESO A, DICK J E. Evolution of the cancer stem cell model[J]. Cell Stem Cell, 2014, 14(3): 275-291. |
2 | LAPIDOT T, SIRARD C, VORMOOR J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J]. Nature, 1994, 367(6464): 645-648. |
3 | BONNET D, DICK J E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J]. Nat Med, 1997, 3(7): 730-737. |
4 | AL-HAJJ M, WICHA M S, BENITO-HERNANDEZ A, et al. Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci USA, 2003, 100(7): 3983-3988. |
5 | LATHIA J D, MACK S C, MULKEARNS-HUBERT E E, et al. Cancer stem cells in glioblastoma[J]. Genes Dev, 2015, 29(12): 1203-1217. |
6 | O'BRIEN C A, POLLETT A, GALLINGER S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice[J]. Nature, 2007, 445(7123): 106-110. |
7 | LI C, HEIDT D G, DALERBA P, et al. Identification of pancreatic cancer stem cells[J]. Cancer Res, 2007, 67(3): 1030-1037. |
8 | KIM C F, JACKSON E L, WOOLFENDEN A E, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer[J]. Cell, 2005, 121(6): 823-835. |
9 | MA S, CHAN K W, HU L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells[J]. Gastroenterology, 2007, 132(7): 2542-2556. |
10 | HURT E M, KAWASAKI B T, KLARMANN G J, et al. CD44+ CD24- prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis[J]. Br J Cancer, 2008, 98(4): 756-765. |
11 | BATLLE E, CLEVERS H. Cancer stem cells revisited[J]. Nat Med, 2017, 23(10): 1124-1134. |
12 | PRAGER B C, BHARGAVA S, MAHADEV V, et al. Glioblastoma stem cells: driving resilience through chaos[J]. Trends cancer, 2020, 6(3): 223-235. |
13 | POLLYEA D A, JORDAN C T. Therapeutic targeting of acute myeloid leukemia stem cells[J]. Blood, 2017, 129(12): 1627-1635. |
14 | YANG L, SHI P, ZHAO G, et al. Targeting cancer stem cell pathways for cancer therapy[J]. Signal Transduct Target Ther, 2020, 5(1): 8. |
15 | TOH T B, LIM J J, CHOW E K. Epigenetics in cancer stem cells[J]. Mol Cancer, 2017, 16(1): 29. |
16 | WARBURG O. On the origin of cancer cells[J]. Science, 1956, 123(3191): 309-314. |
17 | PENG F, WANG J H, FAN W J, et al. Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia[J]. Oncogene, 2018, 37(8): 1062-1074. |
18 | HUR W, RYU J Y, KIM H U, et al. Systems approach to characterize the metabolism of liver cancer stem cells expressing CD133[J]. Sci Rep, 2017, 7: 45557. |
19 | LIU P P, LIAO J, TANG Z J, et al. Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway[J]. Cell Death Differ, 2014, 21(1): 124-135. |
20 | ZHOU Y, ZHOU Y, SHINGU T, et al. Metabolic alterations in highly tumorigenic glioblastoma cells: preference for hypoxia and high dependency on glycolysis[J]. J Biol Chem, 2011, 286(37): 32843-32853. |
21 | LAGADINOU E D, SACH A, CALLAHAN K, et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells[J]. Cell Stem Cell, 2013, 12(3): 329-341. |
22 | KUNTZ E M, BAQUERO P, MICHIE A M, et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells[J]. Nat Med, 2017, 23(10): 1234-1240. |
23 | VLASHI E, LAGADEC C, VERGNES L, et al. Metabolic state of glioma stem cells and nontumorigenic cells[J]. Proc Natl Acad Sci USA, 2011, 108(38):16062-16067. DOI: 10.1073/pnas.1106704108. |
24 | JANISZEWSKA M, SUVÀ M L, RIGGI N, et al. Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells[J]. Genes Dev, 2012, 26(17): 1926-1944. |
25 | VALLE S, ALCALÁ S, MARTIN-HIJANO L, et al. Exploiting oxidative phosphorylation to promote the stem and immunoevasive properties of pancreatic cancer stem cells[J]. Nat Commun, 2020, 11(1): 5265. |
26 | LEE K M, GILTNANE J M, BALKO J M, et al. MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation[J]. Cell Metab, 2017, 26(4): 633-647. |
27 | PASTÒ A, BELLIO C, PILOTTO G, et al. Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation[J]. Oncotarget, 2014, 5(12): 4305-4319. |
28 | GUO B, HAN X, TKACH D, et al. AMPK promotes the survival of colorectal cancer stem cells[J]. Animal Model Exp Med, 2018, 1(2): 134-142. |
29 | VELLINGA T T, BOROVSKI T, DE B V C, et al. SIRT1/PGC1α-dependent increase in oxidative phosphorylation supports chemotherapy resistance of colon cancer[J]. Clin Cancer Res, 2015, 21(12): 2870-2879. |
30 | RAGGI C, TADDEI M L, SACCO E, et al. Mitochondrial oxidative metabolism contributes to a cancer stem cell phenotype in cholangiocarcinoma[J]. J Hepatol, 2021, 74(6): 1373-1385. |
31 | SKRTIĆ M, SRISKANTHADEVAN S, JHAS B, et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia[J]. Cancer Cell, 2011, 20(5): 674-688. |
32 | MOLINA J R, SUN Y, PROTOPOPOVA M, et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability[J]. Nat Med, 2018, 24(7): 1036-1046. |
33 | BROWN J R, CHAN D K, SHANK J J, et al. Phase Ⅱ clinical trial of metformin as a cancer stem cell-targeting agent in ovarian cancer[J]. JCI Insight, 2020, 5(11): e133247. |
34 | KORDES S, POLLAK M N, ZWINDERMAN A H, et al. Metformin in patients with advanced pancreatic cancer: a double-blind, randomised, placebo-controlled phase 2 trial[J]. Lancet Oncol, 2015, 16(7): 839-847. |
35 | SANCHO P, BURGOS-RAMOS E, TAVERA A, et al. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells[J]. Cell Metab, 2015, 22(4): 590-605. |
36 | SHIBAO S, MINAMI N, KOIKE N, et al. Metabolic heterogeneity and plasticity of glioma stem cells in a mouse glioblastoma model[J]. Neuro Oncol, 2018, 20(3) :343-354. |
37 | ANDERSON A S, ROBERTS P C, FRISARD M I, et al. Ovarian tumor-initiating cells display a flexible metabolism[J]. Exp Cell Res, 2014, 328(1) :44-57. |
38 | LIU S, CONG Y, WANG D, et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts[J]. Stem Cell Reports, 2014, 2(1): 78-91. |
39 | LUO M, SHANG L, BROOKS M D, et al. Targeting breast cancer stem cell state equilibrium through modulation of redox signaling[J]. Cell Metab, 2018, 28(1): 69-86.e6. |
40 | PEI S, MINHAJUDDIN M, ADANE B, et al. AMPK/FIS1-mediated mitophagy is required for self-renewal of human AML stem cells[J]. Cell Stem Cell, 2018, 23(1): 86-100.e6. |
41 | ADANE B, YE H, KHAN N, et al. The hematopoietic oxidase NOX2 regulates self-renewal of leukemic stem cells[J]. Cell Rep, 2019, 27(1): 238-254.e6. |
42 | DINARDO C D, PRATZ K W, LETAI A, et al. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study[J]. Lancet Oncol, 2018, 19(2): 216-228. |
43 | JONES C L, STEVENS B M, D'ALESSANDRO A, et al. Inhibition of amino acid metabolism selectively targets human leukemia stem cells[J]. Cancer Cell, 2018, 34(5): 724-740.e4. |
44 | NACHMIAS B, SCHIMMER A D. Metabolic flexibility in leukemia-adapt or die[J]. Cancer Cell, 2018, 34(5): 695-696. |
45 | DINARDO C D, RAUSCH C R, BENTON C, et al. Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies[J]. Am J Hematol, 2018, 93(3): 401-407. |
46 | YI M, LI J, CHEN S, et al. Emerging role of lipid metabolism alterations in cancer stem cells[J]. J Exp Clin Cancer Res, 2018, 37(1): 118. |
47 | YASUMOTO Y, MIYAZAKI H, VAIDYAN L K, et al. Inhibition of fatty acid synthase decreases expression of stemness markers in glioma stem cells[J]. PLoS One, 2016, 11(1): e0147717. |
48 | ZHOU C, QIAN W, MA J, et al. Resveratrol enhances the chemotherapeutic response and reverses the stemness induced by gemcitabine in pancreatic cancer cells via targeting SREBP1[J]. Cell Prolif, 2019, 52(1): e12514. |
49 | LI J, CONDELLO S, THOMES-PEPIN J, et al. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells[J]. Cell Stem Cell, 2017, 20(3): 303-314.e5. |
50 | CHEN L, REN J, YANG L, et al. Stearoyl-CoA desaturase-1 mediated cell apoptosis in colorectal cancer by promoting ceramide synthesis[J]. Sci Rep, 2016, 6: 19665. |
51 | GALBRAITH L, LEUNG H Y, AHMAD I. Lipid pathway deregulation in advanced prostate cancer[J]. Pharmacol Res, 2018, 131: 177-184. |
52 | ZHANG Q, YU S, LAM M M T, et al. Angiotensin Ⅱ promotes ovarian cancer spheroid formation and metastasis by upregulation of lipid desaturation and suppression of endoplasmic reticulum stress[J]. J Exp Clin Cancer Res, 2019, 38(1): 116. |
53 | EHMSEN S, PEDERSEN M H, WANG G, et al. Increased cholesterol biosynthesis is a key characteristic of breast cancer stem cells influencing patient outcome[J]. Cell Rep, 2019, 27(13): 3927-3938.e6. |
54 | LI X, WU J B, LI Q, et al. SREBP-2 promotes stem cell-like properties and metastasis by transcriptional activation of c-Myc in prostate cancer[J]. Oncotarget, 2016, 7(11): 12869-12884. |
55 | PRASETYANTI P R, MEDEMA J P. Intra-tumor heterogeneity from a cancer stem cell perspective[J]. Mol Cancer, 2017, 16(1): 41. |
56 | SHLUSH L I, MITCHELL A, HEISLER L, et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells[J]. Nature, 2017, 547(7661): 104-108. |
57 | STEVENS B M, JONES C L, POLLYEA D A, et al. Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells[J]. Nat Cancer, 2020, 1(12): 1176-1187. |
58 | WANG T, FAHRMANN J F, LEE H, et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance[J]. Cell Metab, 2018, 27(1): 136-150.e5. |
59 | JONES C L, STEVENS B M, POLLYEA D A, et al. Nicotinamide metabolism mediates resistance to venetoclax in relapsed acute myeloid leukemia stem cells[J]. Cell Stem Cell, 2020, 27(5): 748-764.e4. |
60 | YE H, ADANE B, KHAN N, et al. Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche[J]. Cell Stem Cell, 2016, 19(1): 23-37. |
61 | HE W, LIANG B, WANG C, et al. MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer[J]. Oncogene, 2019, 38(23): 4637-4654. |
62 | ZHANG Z, HAN H, RONG Y, et al. Hypoxia potentiates gemcitabine-induced stemness in pancreatic cancer cells through AKT/Notch1 signaling[J]. J Exp Clin Cancer Res, 2018, 37(1): 291. |
63 | TÖNJES M, BARBUS S, PARK Y J, et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1[J]. Nat Med, 2013, 19(7): 901-908. |
64 | WANG Z Q, FADDAOUI A, BACHVAROVA M, et al. BCAT1 expression associates with ovarian cancer progression: possible implications in altered disease metabolism[J]. Oncotarget, 2015, 6(31): 31522-31543. |
65 | THEWES V, SIMON R, HLEVNJAK M, et al. The branched-chain amino acid transaminase 1 sustains growth of antiestrogen-resistant and ERα-negative breast cancer[J]. Oncogene, 2017, 36(29): 4124-4134. |
66 | MAYERS J R, TORRENCE M E, DANAI L V, et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers[J]. Science, 2016, 353(6304): 1161-1165. |
67 | HATTORI A, TSUNODA M, KONUMA T, et al. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia[J]. Nature, 2017, 545(7655): 500-504. |
68 | TAHILIANI M, KOH K P, SHEN Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1[J]. Science, 2009, 324(5929): 930-935. |
69 | RAFFEL S, FALCONE M, KNEISEL N, et al. BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation[J]. Nature, 2017, 551(7680): 384-388. |
70 | FIGUEROA M E, ABDEL-WAHAB O, LU C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation[J]. Cancer Cell, 2010, 18(6): 553-567. |
71 | XU W, YANG H, LIU Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases[J]. Cancer Cell, 2011, 19(1): 17-30. |
72 | LOSMAN J A, LOOPER R E, KOIVUNEN P, et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible[J]. Science, 2013, 339(6127): 1621-1625. |
73 | PASCHKA P, SCHLENK R F, GAIDZIK V I, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication[J]. J Clin Oncol, 2010, 28(22): 3636-3643. |
74 | YEN K, TRAVINS J, WANG F, et al. AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations[J]. Cancer Discov, 2017, 7(5): 478-493. |
75 | SHIH A H, MEYDAN C, SHANK K, et al. Combination targeted therapy to disrupt aberrant oncogenic signaling and reverse epigenetic dysfunction in IDH2- and TET2-mutant acute myeloid leukemia[J]. Cancer Discov, 2017, 7(5): 494-505. |
76 | DINARDO C D, STEIN E M, DE B S, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML[J]. N Engl J Med, 2018, 378(25): 2386-2398. |
77 | WANG Z, YIP L Y, LEE J H J, et al. Methionine is a metabolic dependency of tumor-initiating cells[J]. Nat Med, 2019, 25(5):825-837. |
[1] | 段昱娟, 黄晶. 核小体重塑及组蛋白去乙酰化酶复合物的负染电镜结构分析[J]. 上海交通大学学报(医学版), 2022, 42(4): 455-463. |
[2] | 张梦吉, 黄琳, 李峥, 马卓然, 魏霖, 袁安彩, 胡刘华, 张薇, 钱昆, 卜军. 基于人群大队列探索心脑血管疾病相关血浆代谢组学特征[J]. 上海交通大学学报(医学版), 2022, 42(3): 259-266. |
[3] | 杜晴晴, 侯泽鑫, 李军, 胡颖, 曹国磊, 李思源. FRA-2 mRNA表达及DNA甲基化水平与代谢综合征的相关性研究[J]. 上海交通大学学报(医学版), 2022, 42(3): 350-356. |
[4] | 党国栋, 洪新宇, 蔡美琴. 烟酰胺单核苷酸对衰老小鼠代谢的干预作用[J]. 上海交通大学学报(医学版), 2022, 42(2): 158-165. |
[5] | 毛久昂, 翁震, 钮晓音, 何杨, 王振欣. Tmprss6基因对小鼠放射性肠损伤的影响[J]. 上海交通大学学报(医学版), 2021, 41(9): 1175-1182. |
[6] | 吴丹, 葛莉萍. 妊娠期糖尿病患者基因DNA甲基化的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(8): 1120-1124. |
[7] | 轩红艳, 王丽华, 李华芳. 精神分裂症患者骨代谢影响因素的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(7): 972-976. |
[8] | 宋兵福, 丁彬彬, 张晓丽, 姚莉韵. 二甲双胍对喹硫平致精神分裂症患者糖脂代谢紊乱的疗效[J]. 上海交通大学学报(医学版), 2021, 41(6): 776-780. |
[9] | 杨紫瑜, 秦娟秀, 李敏, 刘倩. 代谢调控蛋白A调控革兰阳性菌代谢与毒力偶联的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(4): 535-539. |
[10] | 岳江, 周勇, 徐华, 刘文, 韩晓凤, 毛青, 张继东, 麻静, 蒋捍东, 刘伟. 糖脂代谢在新型冠状病毒肺炎普通型和重型患者中的特点分析及比较[J]. 上海交通大学学报(医学版), 2021, 41(3): 355-359. |
[11] | 蒋悦庭, 倪佳英, 郭沈睿, 李菡, 庄雨佳, 王锋. 硫酸胆固醇的生理功能及其在相关疾病中的作用[J]. 上海交通大学学报(医学版), 2021, 41(3): 371-375. |
[12] | 吴静, 李学义, 陈京红, 王泽剑. 抑郁模型小鼠海马中胆汁酸受体变化的研究[J]. 上海交通大学学报(医学版), 2021, 41(12): 1628-1634. |
[13] | 周坤, 陈虞梅, 刘建军, 黄钢. 膀胱癌根治性切除术前利尿延迟18氟-氟代脱氧葡萄糖正电子发射计算机断层显像的预后价值[J]. 上海交通大学学报(医学版), 2021, 41(10): 1336-1343. |
[14] | 姜梦迪, 张文. 糖尿病肾病中的组蛋白修饰与靶向干预的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(1): 103-107. |
[15] | 邹 琛1, 2,徐润灏1, 3,张 泓2,马 展2,陈 黎2,张 洁3,李 敏3,张舒林1. 小分子代谢物在肺癌和肺炎鉴别诊断中的潜在作用[J]. 上海交通大学学报(医学版), 2020, 40(8): 1041-1047. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||