1 |
中华人民共和国国家卫生健康委员会. 中国结直肠癌诊疗规范(2020年版)[J]. 中华外科杂志, 2020, 58(8): 561-585.
|
|
National Health Commission of the People's Republic of China. Chinese protocol of diagnosis and treatment of colorectal cancer (2020 edition)[J]. Chinese Journal of Surgery, 2020, 58(8): 561-585.
|
2 |
VAN CUTSEM E, CERVANTES A, ADAM R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer[J]. Ann Oncol, 2016, 27(8): 1386-1422.
|
3 |
ZHANG Y Y, SUN Z, MAO X X, et al. Impact of mismatch-repair deficiency on the colorectal cancer immune microenvironment[J]. Oncotarget, 2017, 8(49): 85526-85536.
|
4 |
MABY P, TOUGERON D, HAMIEH M, et al. Correlation between density of CD8+ T-cell infiltrate in microsatellite unstable colorectal cancers and frameshift mutations: a rationale for personalized immunotherapy[J]. Cancer Res, 2015, 75(17): 3446-3455.
|
5 |
MARCUS L, LEMERY S J, KEEGAN P, et al. FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors[J]. Clin Cancer Res, 2019, 25(13): 3753-3758.
|
6 |
BENSON A B, VENOOK A P, AL-HAWARY M M, et al. Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2021, 19(3): 329-359.
|
7 |
KIM J H, KIM S Y, BAEK J Y, et al. A phase Ⅱ study of avelumab monotherapy in patients with mismatch repair-deficient/microsatellite instability-high or POLE-mutated metastatic or unresectable colorectal cancer[J]. Cancer Res Treat, 2020, 52(4): 1135-1144.
|
8 |
ANDRÉ T, SHIU K K, KIM T W, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer[J]. N Engl J Med, 2020, 383(23): 2207-2218.
|
9 |
GOMAR M, NAJAFI M, AGHILI M, et al. Durable complete response to pembrolizumab in microsatellite stable colorectal cancer[J]. Daru, 2021, 29(2): 501-506.
|
10 |
HAAG G M, SPRINGFELD C, GRÜN B, et al. Pembrolizumab and maraviroc in refractory mismatch repair proficient/microsatellite-stable metastatic colorectal cancer: the PICCASSO phase Ⅰ trial[J]. Eur J Cancer, 2022, 167: 112-122.
|
11 |
OVERMAN M J, MCDERMOTT R, LEACH J L, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study[J]. Lancet Oncol, 2017, 18(9): 1182-1191.
|
12 |
KIM R D, KOVARI B P, MARTINEZ M, et al. A phase Ⅰ/Ⅰb study of regorafenib and nivolumab in mismatch repair proficient advanced refractory colorectal cancer[J]. Eur J Cancer, 2022, 169: 93-102.
|
13 |
DESAI J, DEVA S, LEE J S, et al. Phase ⅠA/ⅠB study of single-agent tislelizumab, an investigational anti-PD-1 antibody, in solid tumors[J]. J Immunother Cancer, 2020, 8(1): e000453.
|
14 |
TAPIA RICO G, PRICE T J. Atezolizumab for the treatment of colorectal cancer: the latest evidence and clinical potential[J]. Expert Opin Biol Ther, 2018, 18(4): 449-457.
|
15 |
ENG C, KIM T W, BENDELL J, et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial[J]. Lancet Oncol, 2019, 20(6): 849-861.
|
16 |
METTU N B, OU F S, ZEMLA T J, et al. Assessment of capecitabine and bevacizumab with or without atezolizumab for the treatment of refractory metastatic colorectal cancer: a randomized clinical trial[J]. JAMA Netw Open, 2022, 5(2): e2149040.
|
17 |
TAÏEB J, ANDRÉ T, EL HAJBI F, et al. Avelumab versus standard second line treatment chemotherapy in metastatic colorectal cancer patients with microsatellite instability: the SAMCO-PRODIGE 54 randomised phase Ⅱ trial[J]. Dig Liver Dis, 2021, 53(3): 318-323.
|
18 |
MARTINELLI E, MARTINI G, FAMIGLIETTI V, et al. Cetuximab rechallenge plus avelumab in pretreated patients with RAS wild-type metastatic colorectal cancer: the phase 2 single-arm clinical CAVE trial[J]. JAMA Oncol, 2021, 7(10): 1529-1535.
|
19 |
VAN DEN EYNDE M, HUYGHE N, DE CUYPER A, et al. Interim analysis of the AVETUXIRI trial: avelumab combined with cetuximab and irinotecan for treatment of refractory microsatellite stable (MSS) metastatic colorectal cancer (mCRC)—a proof of concept, open-label, nonrandomized phase Ⅱa study[J]. J Clin Oncol, 2021, 39(3_suppl): 80.
|
20 |
MORSE M A, HOCHSTER H, BENSON A. Perspectives on treatment of metastatic colorectal cancer with immune checkpoint inhibitor therapy[J]. Oncologist, 2020, 25(1): 33-45.
|
21 |
SUZUKI S, KAWAKAMI H, MIIKE T, et al. Complete remission of colon cancer with ipilimumab monotherapy[J]. Intern Med, 2021, 60(6): 957-958.
|
22 |
LENZ H J, VAN CUTSEM E, LUISA LIMON M, et al. First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase Ⅱ CheckMate 142 study[J]. J Clin Oncol, 2022, 40(2): 161-170.
|
23 |
FUMET J D, ISAMBERT N, HERVIEU A, et al. Phase Ⅰb/Ⅱ trial evaluating the safety, tolerability and immunological activity of durvalumab (MEDI4736) (anti-PD-L1) plus tremelimumab (anti-CTLA-4) combined with FOLFOX in patients with metastatic colorectal cancer[J]. ESMO Open, 2018, 3(4): e000375.
|
24 |
CHEN E X, JONKER D J, LOREE J M, et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: the Canadian cancer trials group CO.26 study[J]. JAMA Oncol, 2020, 6(6): 831-838.
|
25 |
SEGAL N H, CERCEK A, KU G, et al. Phase Ⅱ single-arm study of durvalumab and tremelimumab with concurrent radiotherapy in patients with mismatch repair-proficient metastatic colorectal cancer[J]. Clin Cancer Res, 2021, 27(8): 2200-2208.
|
26 |
LIANG R P, ZHU X D, LAN T Y, et al. TIGIT promotes CD8+T cells exhaustion and predicts poor prognosis of colorectal cancer[J]. Cancer Immunol Immunother, 2021, 70(10): 2781-2793.
|
27 |
THIBAUDIN M, LIMAGNE E, HAMPE L, et al. Targeting PD-L1 and TIGIT could restore intratumoral CD8 T cell function in human colorectal cancer[J]. Cancer Immunol Immunother, 2022, 71(10): 2549-2563.
|
28 |
KOYAMA S, AKBAY E A, LI Y Y, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints[J]. Nat Commun, 2016, 7: 10501.
|
29 |
MA Q, LIU J N, WU G L, et al. Co-expression of LAG3 and TIM3 identifies a potent Treg population that suppresses macrophage functions in colorectal cancer patients[J]. Clin Exp Pharmacol Physiol, 2018, 45(10): 1002-1009.
|