1 |
OOSTINDIE S C, LAZAR G A, SCHUURMAN J, et al. Avidity in antibody effector functions and biotherapeutic drug design[J]. Nat Rev Drug Discov, 2022, 21(10): 715-735.
|
2 |
ROBINSON W H. Sequencing the functional antibody repertoire: diagnostic and therapeutic discovery[J]. Nat Rev Rheumatol, 2015, 11(3): 171-182.
|
3 |
YU X C, TSIBANE T, MCGRAW P A, et al. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors[J]. Nature, 2008, 455(7212): 532-536.
|
4 |
LI T T, CHEN J Y, ZHENG Q B, et al. Identification of a cross-neutralizing antibody that targets the receptor binding site of H1N1 and H5N1 influenza viruses[J]. Nat Commun, 2022, 13(1): 5182.
|
5 |
DUFLOO J, PLANCHAIS C, FRÉMONT S, et al. Broadly neutralizing anti-HIV-1 antibodies tether viral particles at the surface of infected cells[J]. Nat Commun, 2022, 13(1): 630.
|
6 |
WALKER L M, HUBER M, DOORES K J, et al. Broad neutralization coverage of HIV by multiple highly potent antibodies[J]. Nature, 2011, 477(7365): 466-470.
|
7 |
WU Y C, KIPLING D, LEONG H S, et al. High-throughput immunoglobulin repertoire analysis distinguishes between human IgM memory and switched memory B-cell populations[J]. Blood, 2010, 116(7): 1070-1078.
|
8 |
ROGERS T F, ZHAO F Z, HUANG D L, et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model[J]. Science, 2020, 369(6506): 956-963.
|
9 |
LIANG W C, YIN J P, LUPARDUS P, et al. Dramatic activation of an antibody by a single amino acid change in framework[J]. Sci Rep, 2021, 11(1): 22365.
|
10 |
RAPP M, GUO Y C, REDDEM E R, et al. Modular basis for potent SARS-CoV-2 neutralization by a prevalent VH1-2-derived antibody class[J]. Cell Rep, 2021, 35(1): 108950.
|
11 |
TORTORICI M A, BELTRAMELLO M, LEMPP F A, et al. Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms[J]. Science, 2020, 370(6519): 950-957.
|
12 |
LIU L H, WANG P F, NAIR M S, et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike[J]. Nature, 2020, 584(7821): 450-456.
|
13 |
VON BOEHMER L, LIU C, ACKERMAN S, et al. Sequencing and cloning of antigen-specific antibodies from mouse memory B cells[J]. Nat Protoc, 2016, 11(10): 1908-1923.
|
14 |
MASCOLA J R, HAYNES B F. HIV-1 neutralizing antibodies: understanding nature's pathways[J]. Immunol Rev, 2013, 254(1): 225-244.
|
15 |
CORTI D, LANZAVECCHIA A. Broadly neutralizing antiviral antibodies[J]. Annu Rev Immunol, 2013, 31: 705-742.
|
16 |
MUECKSCH F, WEISBLUM Y, BARNES C O, et al. Affinity maturation of SARS-CoV-2 neutralizing antibodies confers potency, breadth, and resilience to viral escape mutations[J]. Immunity, 2021, 54(8): 1853-1868.e7.
|
17 |
KREER C, ZEHNER M, WEBER T, et al. Longitudinal isolation of potent near-germline SARS-CoV-2-neutralizing antibodies from COVID-19 patients[J]. Cell, 2020, 182(4): 843-854.e12.
|
18 |
CHEN X J, ZHOU T Q, SCHMIDT S D, et al. Vaccination induces maturation in a mouse model of diverse unmutated VRC01-class precursors to HIV-neutralizing antibodies with >50% breadth[J]. Immunity, 2021, 54(2): 324-339.e8.
|
19 |
TIAN M, MCGOVERN K, CHENG H L, et al. Conditional antibody expression to avoid central B cell deletion in humanized HIV-1 vaccine mouse models[J]. Proc Natl Acad Sci U S A, 2020, 117(14): 7929-7940.
|
20 |
ZHOU J Q, KLEINSTEIN S H. Cutting edge: Ig H chains are sufficient to determine most B cell clonal relationships[J]. J Immunol, 2019, 203(7): 1687-1692.
|
21 |
JAFFE D B, SHAHI P, ADAMS B A, et al. Functional antibodies exhibit light chain coherence[J]. Nature, 2022, 611(7935): 352-357.
|
22 |
WANG L T, HURLBURT N K, SCHÖN A, et al. The light chain of the L9 antibody is critical for binding circumsporozoite protein minor repeats and preventing malaria[J]. Cell Rep, 2022, 38(7): 110367.
|
23 |
BARNES C O, WEST A P Jr, HUEY-TUBMAN K E, et al. Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies[J]. Cell, 2020, 182(4): 828-842.e16.
|
24 |
LOMBANA T N, DILLON M, BEVERS J 3rd, et al. Optimizing antibody expression by using the naturally occurring framework diversity in a live bacterial antibody display system[J]. Sci Rep, 2015, 5: 17488.
|
25 |
KLEIN F, DISKIN R, SCHEID J F, et al. Somatic mutations of the immunoglobulin framework are generally required for broad and potent HIV-1 neutralization[J]. Cell, 2013, 153(1): 126-138.
|