1 |
WU F, YUAN Z C, SHAFIQ M, et al. Synergistic effect of glucagon-like peptide-1 analogue liraglutide and ZnO on the antibacterial, hemostatic, and wound healing properties of nanofibrous dressings[J]. J Biosci Bioeng, 2022, 134(3): 248-258.
|
2 |
SHI L Y, ZHAO Y N, XIE Q F, et al. Moldable hyaluronan hydrogel enabled by dynamic metal-bisphosphonate coordination chemistry for wound healing[J]. Adv Healthc Mater, 2018, 7(5): 10.1002/adhm.201700973.
|
3 |
RAI V, MOELLMER R, AGRAWAL D K. Stem cells and angiogenesis: implications and limitations in enhancing chronic diabetic foot ulcer healing[J]. Cells, 2022, 11(15): 2287.
|
4 |
OKONKWO U A, DIPIETRO L A. Diabetes and wound angiogenesis[J]. Int J Mol Sci, 2017, 18(7): 1419.
|
5 |
ZHANG W Y, WANG L T, GUO H Y, et al. Dapagliflozin-loaded exosome mimetics facilitate diabetic wound healing by HIF-1α- mediated enhancement of angiogenesis[J]. Adv Healthc Mater, 2023, 12(7): e2202751.
|
6 |
SIDDIQUI Z, SARKAR B, KIM K K, et al. Angiogenic hydrogels for dental pulp revascularization[J]. Acta Biomater, 2021, 126: 109-118.
|
7 |
QIU W W, HAN H, LI M N, et al. Nanofibers reinforced injectable hydrogel with self-healing, antibacterial, and hemostatic properties for chronic wound healing[J]. J Colloid Interface Sci, 2021, 596: 312-323.
|
8 |
CHANG L K, XU Y L, WU Z Y, et al. Hyaluronic acid methacrylate/laponite hydrogel loaded with BMP4 and maintaining its bioactivity for scar-free wound healing[J]. Regen Biomater, 2023, 10: rbad023.
|
9 |
BURDICK J A, PRESTWICH G D. Hyaluronic acid hydrogels for biomedical applications[J]. Adv Mater, 2011, 23(12): H41-H56.
|
10 |
LI J Y, ZHAI D, LV F, et al. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing[J]. Acta Biomater, 2016, 36: 254-266.
|
11 |
LIU N B, ZHU S J, DENG Y Z, et al. Construction of multifunctional hydrogel with metal-polyphenol capsules for infected full-thickness skin wound healing[J]. Bioact Mater, 2022, 24: 69-80.
|
12 |
ZHANG K Y, LIN S E, FENG Q, et al. Nanocomposite hydrogels stabilized by self-assembled multivalent bisphosphonate-magnesium nanoparticles mediate sustained release of magnesium ion and promote in situ bone regeneration[J]. Acta Biomater, 2017, 64: 389-400.
|
13 |
LIU H, CAI Z W, WANG F, et al. Colon-targeted adhesive hydrogel microsphere for regulation of gut immunity and flora[J]. Adv Sci (Weinh), 2021, 8(18): e2101619.
|
14 |
ZHOU Y, GU Z P, LIU J, et al. Arginine based poly (ester amide)/hyaluronic acid hybrid hydrogels for bone tissue Engineering[J]. Carbohydr Polym, 2020, 230: 115640.
|
15 |
LIU J, SU C Y, CHEN Y T, et al. Current understanding of the applications of photocrosslinked hydrogels in biomedical engineering[J]. Gels, 2022, 8(4): 216.
|
16 |
XIA H T, ZHANG Y, XIN H M, et al. Metal-phenolic network-based polydopamine@Cu within a polyvinyl alcohol hydrogel film for improved infected wound healing through antibacterial and pro-angiogenesis activity[J]. Mater Des, 2022, 221: 110904.
|
17 |
LEE J H, PARTHIBAN P, JIN G Z, et al. Materials roles for promoting angiogenesis in tissue regeneration[J]. Prog Mater Sci, 2021, 117: 100732.
|
18 |
FENG X Z, WANG C, SHANG S B, et al. Multicolor fluorescent cellulose hydrogels actuators: lanthanide-ligand metal coordination, synergetic color-changing and shape-morphing, and antibacterial activity[J]. Chem Eng J, 2022, 450: 138356.
|
19 |
ZHAO Z Y, LI G, RUAN H T, et al. Capturing magnesium ions via microfluidic hydrogel microspheres for promoting cancellous bone regeneration[J]. ACS Nano, 2021, 15(8): 13041-13054.
|
20 |
LUO M, WANG Y D, XIE C X, et al. Multiple coordination-derived bioactive hydrogel with proangiogenic hemostatic capacity for wound repair[J]. Adv Healthc Mater, 2022, 11(18): e2200722.
|
21 |
ZHAO Y C, CHEN Z J, SHAO W J, et al. Black phosphorus-enhanced injectable hydrogel for infected soft tissue healing[J]. APL Bioeng, 2023, 7(1): 016103.
|