上海交通大学学报(医学版) ›› 2022, Vol. 42 ›› Issue (10): 1466-1473.doi: 10.3969/j.issn.1674-8115.2022.10.013
• 综述 • 上一篇
收稿日期:
2022-04-18
接受日期:
2022-09-06
出版日期:
2022-10-28
发布日期:
2022-12-02
通讯作者:
冯晓玲
E-mail:773768395@qq.com;doctorfxl@163.com
作者简介:
刘子维(1994—),女,博士生;电子信箱:773768395@qq.com。
基金资助:
LIU Ziwei1(), CAO Wenwen1, WANG Yunrui1, FENG Xiaoling2()
Received:
2022-04-18
Accepted:
2022-09-06
Online:
2022-10-28
Published:
2022-12-02
Contact:
FENG Xiaoling
E-mail:773768395@qq.com;doctorfxl@163.com
Supported by:
摘要:
不明原因型复发性流产(unexplained recurrent spontaneous abortion,URSA)又称为同种免疫型复发性流产,目前认为其主要的发病机制为母胎界面免疫失衡、滋养细胞侵入异常以及胎盘血管生成异常。现有研究已经揭示了沉默信息调节因子1(sirtuin 1,SIRT1)基因在生殖领域和调节免疫性疾病方面的重要作用,然而关于SIRT1在改善URSA中的作用机制,尚缺乏全面系统的研究。SIRT1可能是通过调节组蛋白和关键转录因子的乙酰化过程,影响机体氧化应激和细胞自噬,从而参与URSA发生发展的众多反馈回路和网络。最终,SIRT1可起到调节滋养层细胞侵入和母胎界面血管生成的作用;同时,可以通过控制促炎细胞因子的产生而改善妊娠期间母体过度的免疫炎症反应。SIRT1的活性决定了其去乙酰化的能力,对于下游通路和蛋白的稳定性至关重要,因此提高其活性对于改善URSA有重要意义。研究表明,二甲双胍与白藜芦醇可以激活SIRT1,对SIRT1及其下游靶蛋白具有保护作用,可能是URSA潜在的治疗剂。该文基于SIRT1功能,综述了SIRT1在URSA发生机制中的潜在作用以及外源性靶向激活SIRT1的药物,以期对临床研究中URSA的预防和治疗提供参考。
中图分类号:
刘子维, 曹雯雯, 王云瑞, 冯晓玲. SIRT1在不明原因型复发性流产中的潜在作用[J]. 上海交通大学学报(医学版), 2022, 42(10): 1466-1473.
LIU Ziwei, CAO Wenwen, WANG Yunrui, FENG Xiaoling. Potential role of SIRT1 in unexplained recurrent spontaneous abortion[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(10): 1466-1473.
1 | 自然流产诊治中国专家共识(2020年版) [J]. 中国实用妇科与产科杂志, 2020, 36(11): 1082-1090. |
Consensus of Chinese Experts on the Diagnosis and Treatment of Spontaneous Abortion (2020 Edition) [J]. Chin J Pract Gynecol Obstet, 2020, 36(11): 1082-1090. | |
2 | POPESCU F, JASLOW C R, KUTTEH W H. Recurrent pregnancy loss evaluation combined with 24-chromosome microarray of miscarriage tissue provides a probable or definite cause of pregnancy loss in over 90% of patients[J]. Hum Reprod, 2018, 33(4): 579-587. |
3 | HOU Y, LI J P, LIU Q, et al. The optimal timing of immunotherapy may improve pregnancy outcome in women with unexplained recurrent pregnancy loss: a perspective follow-up study in northeastern China[J]. Am J Reprod Immunol, 2020, 83(4): e13225. |
4 | YU L, ZHANG Y, XIONG J F, et al. Activated γδ T cells with higher CD107a expression and inflammatory potential during early pregnancy in patients with recurrent spontaneous abortion[J]. Front Immunol, 2021, 12: 724662. |
5 | LIU Y F, GAO S J, ZHAO Y J, et al. Decidual natural killer cells: a good nanny at the maternal-fetal interface during early pregnancy[J]. Front Immunol, 2021, 12: 663660. |
6 | KARBASFOROOSHAN H, ROOHBAKHSH A, KARIMI G. SIRT1 and microRNAs: the role in breast, lung and prostate cancers[J]. Exp Cell Res, 2018, 367(1): 1-6. |
7 | QIU Y Q, ZHOU X Y, LIU Y, et al. The role of sirtuin-1 in immune response and systemic lupus erythematosus[J]. Front Immunol, 2021, 12: 632383. |
8 | SHEN P, DENG X, CHEN Z, et al. SIRT1: a potential therapeutic target in autoimmune diseases[J]. Front Immunol, 2021, 12: 779177. |
9 | LIU Y, ZHANG M Q, ZHANG H J, et al. Anthocyanins inhibit airway inflammation by downregulating the NF-κB pathway via the miR-138-5p/SIRT1 axis in asthmatic mice[J]. Int Arch Allergy Immunol, 2022, 183(5): 539-551. |
10 | ARUL NAMBI RAJAN K, KHATER M, SONCIN F, et al. Sirtuin1 is required for proper trophoblast differentiation and placental development in mice[J]. Placenta, 2018, 62: 1-8. |
11 | ZHAO H, WONG R J, STEVENSON D K. The impact of hypoxia in early pregnancy on placental cells[J]. Int J Mol Sci, 2021, 22(18): 9675. |
12 | KNÖFLER M, HAIDER S, SALEH L, et al. Human placenta and trophoblast development: key molecular mechanisms and model systems[J]. Cell Mol Life Sci, 2019, 76(18): 3479-3496. |
13 | POLLHEIMER J, VONDRA S, BALTAYEVA J, et al. Regulation of placental extravillous trophoblasts by the maternal uterine environment[J]. Front Immunol, 2018, 9: 2597. |
14 | SUN X H, TONG X M, HAO Y Q, et al. Abnormal Cullin1 neddylation-mediated p21 accumulation participates in the pathogenesis of recurrent spontaneous abortion by regulating trophoblast cell proliferation and differentiation[J]. Mol Hum Reprod, 2020, 26(5): 327-339. |
15 | ZHANG S N, DING J L, WANG J Y, et al. CXCL5 downregulation in villous tissue is correlated with recurrent spontaneous abortion[J]. Front Immunol, 2021, 12: 717483. |
16 | XIONG L L, YE X, CHEN Z, et al. Advanced maternal age-associated SIRT1 deficiency compromises trophoblast epithelial-mesenchymal transition through an increase in vimentin acetylation[J]. Aging Cell, 2021, 20(10): e13491. |
17 | LEE K M, SEO H W, KWON M S, et al. SIRT1 negatively regulates invasive and angiogenic activities of the extravillous trophoblast[J]. Am J Reprod Immunol, 2019, 82(4): e13167. |
18 | CHAKRABORTY D, RUMI M A K, SOARES M J. NK cells, hypoxia and trophoblast cell differentiation[J]. Cell Cycle, 2012, 11(13): 2427-2430. |
19 | JOO H Y, YUN M Y, JEONG J, et al. SIRT1 deacetylates and stabilizes hypoxia-inducible factor-1α (HIF-1α) via direct interactions during hypoxia[J]. Biochem Biophys Res Commun, 2015, 462(4): 294-300. |
20 | CHEN X, LU Y, ZHANG Z G, et al. Intercellular interplay between Sirt1 signalling and cell metabolism in immune cell biology[J]. Immunology, 2015, 145(4): 455-467. |
21 | DING J L, ZHANG Y, CAI X P, et al. Crosstalk between trophoblast and macrophage at the maternal-fetal interface: current status and future perspectives[J]. Front Immunol, 2021, 12: 758281. |
22 | TANNAHILL G M, CURTIS A M, ADAMIK J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α[J]. Nature, 2013, 496(7444): 238-242. |
23 | PRUTSCH N, FOCK V, HASLINGER P, et al. The role of interleukin-1β in human trophoblast motility[J]. Placenta, 2012, 33(9): 696-703. |
24 | GONZALEZ M, NEUFELD J, REIMANN K, et al. Expansion of human trophoblastic spheroids is promoted by decidualized endometrial stromal cells and enhanced by heparin-binding epidermal growth factor-like growth factor and interleukin-1 Β[J]. Mol Hum Reprod, 2011, 17(7): 421-433. |
25 | WANG X H, XU S, ZHOU X Y, et al. Low chorionic villous succinate accumulation associates with recurrent spontaneous abortion risk[J]. Nat Commun, 2021, 12(1): 3428. |
26 | SINGH M, ACHARYA N, SHUKLA S, et al. Comparative study of endometrial & subendometrial angiogenesis in unexplained infertile versus normal fertile women[J]. Indian J Med Res, 2021, 154(1): 99-107. |
27 | LI D, ZHENG L W, ZHAO D H, et al. The role of immune cells in recurrent spontaneous abortion[J]. Reprod Sci, 2021, 28(12): 3303-3315. |
28 | ALMASRY S M, ELMANSY R A, ELFAYOMY A K, et al. Ultrastructure alteration of decidual natural killer cells in women with unexplained recurrent miscarriage: a possible association with impaired decidual vascular remodelling[J]. J Mol Histol, 2015, 46(1): 67-78. |
29 | POTENTE M, GHAENI L, BALDESSARI D, et al. SIRT1 controls endothelial angiogenic functions during vascular growth[J]. Genes Dev, 2007, 21(20): 2644-2658. |
30 | HUANG Y J, NAN G X. Oxidative stress-induced angiogenesis[J]. J Clin Neurosci, 2019, 63: 13-16. |
31 | KRZYWINSKA E, KANTARI-MIMOUN C, KERDILES Y, et al. Loss of HIF-1α in natural killer cells inhibits tumour growth by stimulating non-productive angiogenesis[J]. Nat Commun, 2017, 8(1): 1597. |
32 | WANG W N, SUN W X, CHENG Y L, et al. Role of sirtuin-1 in diabetic nephropathy[J]. J Mol Med (Berl), 2019, 97(3): 291-309. |
33 | CHEN X Y, JIANG L M, WANG C C, et al. Hypoxia inducible factor and microvessels in peri-implantation endometrium of women with recurrent miscarriage[J]. Fertil Steril, 2016, 105(6): 1496-1502.e4. |
34 | CHEN X, MAN G, LIU Y, et al. Physiological and pathological angiogenesis in endometrium at the time of embryo implantation[J]. Am J Reprod Immunol, 2017, 78(2). doi: 10.1111/aji.12693. |
35 | TICCONI C, PIETROPOLLI A, DI SIMONE N, et al. Endometrial immune dysfunction in recurrent pregnancy loss[J]. Int J Mol Sci, 2019, 20(21): 5332. |
36 | EHSANI M, MOHAMMADNIA-AFROUZI M, MIRZAKHANI M, et al. Female unexplained infertility: a disease with imbalanced adaptive immunity[J]. J Hum Reprod Sci, 2019, 12(4): 274-282. |
37 | PIRES DA SILVA J, MONCEAUX K, GUILBERT A, et al. SIRT1 protects the heart from ER stress-induced injury by promoting eEF2K/eEF2-dependent autophagy[J]. Cells, 2020, 9(2): 426. |
38 | GERMIC N, FRANGEZ Z, YOUSEFI S, et al. Regulation of the innate immune system by autophagy: monocytes, macrophages, dendritic cells and antigen presentation[J]. Cell Death Differ, 2019, 26(4): 715-727. |
39 | DERETIC V. Autophagy in inflammation, infection, and immunometabolism[J]. Immunity, 2021, 54(3): 437-453. |
40 | MATSUZAWA-ISHIMOTO Y, HWANG S, CADWELL K. Autophagy and inflammation[J]. Annu Rev Immunol, 2018, 36: 73-101. |
41 | QIN X Y, SHEN H H, ZHOU W J, et al. Insight of autophagy in spontaneous miscarriage[J]. Int J Biol Sci, 2022, 18(3): 1150-1170. |
42 | TAN H X, YANG S L, LI M Q, et al. Autophagy suppression of trophoblast cells induces pregnancy loss by activating decidual NK cytotoxicity and inhibiting trophoblast invasion[J]. Cell Commun Signal, 2020, 18(1): 73. |
43 | NG F, TANG B L. Sirtuins' modulation of autophagy[J]. J Cell Physiol, 2013, 228(12): 2262-2270. |
44 | GANESAN R, HOS N J, GUTIERREZ S, et al. Salmonella typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy[J]. PLoS Pathog, 2017, 13(2): e1006227. |
45 | XIANG H, LIU S, ZONG C, et al. A single nucleotide polymorphism in the MTOR gene is associated with recurrent spontaneous abortion in the Chinese female population[J]. Syst Biol Reprod Med, 2015, 61(4): 205-210. |
46 | ZHU X X, CHU H Y, JIANG S, et al. Sirt1 ameliorates systemic sclerosis by targeting the mTOR pathway[J]. J Dermatol Sci, 2017, 87(2): 149-158. |
47 | WANG J L, SONG X Q, TAN G J, et al. NAD+ improved experimental autoimmune encephalomyelitis by regulating SIRT1 to inhibit PI3K/Akt/mTOR signaling pathway[J]. Aging, 2021, 13(24): 25931-25943. |
48 | CHUNG C, SEO W, SILWAL P, et al. Crosstalks between inflammasome and autophagy in cancer[J]. J Hematol Oncol, 2020, 13(1): 100. |
49 | PARK S, SHIN J, BAE J, et al. SIRT1 alleviates LPS-induced IL-1β production by suppressing NLRP3 inflammasome activation and ROS production in trophoblasts[J]. Cells, 2020, 9(3): 728. |
50 | BAHIA W, SOLTANI I, ABIDI A, et al. Identification of genes and miRNA associated with idiopathic recurrent pregnancy loss: an exploratory data mining study[J]. BMC Med Genomics, 2020, 13(1): 75. |
51 | TAKEDA-WATANABE A, KITADA M, KANASAKI K, et al. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells[J]. Biochem Biophys Res Commun, 2012, 427(1): 191-196. |
52 | HODGE G, TRAN H B, REYNOLDS P N, et al. Lymphocyte senescence in COPD is associated with decreased sirtuin 1 expression in steroid resistant pro-inflammatory lymphocytes[J]. Ther Adv Respir Dis, 2020, 14: 1753466620905280. |
53 | ESCANDE C, CHINI C C S, NIN V, et al. Deleted in breast cancer-1 regulates SIRT1 activity and contributes to high-fat diet-induced liver steatosis in mice[J]. J Clin Invest, 2010, 120(2): 545-558. |
54 | Guideline Group on Rpl ESHRE, ATIK R B, CHRISTIANSEN O B, et al. ESHRE guideline: recurrent pregnancy loss[J]. Hum Reprod Open, 2018, 2018(2): hoy004. |
55 | ST-GERMAIN L E, CASTELLANA B, BALTAYEVA J, et al. Maternal obesity and the uterine immune cell landscape: the shaping role of inflammation[J]. Int J Mol Sci, 2020, 21(11): 3776. |
56 | GONZÁLEZ F, CONSIDINE R V, ABDELHADI O A, et al. Saturated fat ingestion promotes lipopolysaccharide-mediated inflammation and insulin resistance in polycystic ovary syndrome[J]. J Clin Endocrinol Metab, 2019, 104(3): 934-946. |
57 | PFLUGER P T, HERRANZ D, VELASCO-MIGUEL S, et al. Sirt1 protects against high-fat diet-induced metabolic damage[J]. Proc Natl Acad Sci USA, 2008, 105(28): 9793-9798. |
58 | THAN N G, HAHN S, ROSSI S W, et al. Editorial: fetal-maternal immune interactions in pregnancy[J]. Front Immunol, 2019, 10: 2729. |
59 | LIU G W, BI Y J, XUE L X, et al. Dendritic cell SIRT1-HIF1α axis programs the differentiation of CD4+ T cells through IL-12 and TGF-β1[J]. Proc Natl Acad Sci USA, 2015, 112(9): E957-E965. |
60 | ROBERTSON S A, CARE A S, MOLDENHAUER L M. Regulatory T cells in embryo implantation and the immune response to pregnancy[J]. J Clin Invest, 2018, 128(10): 4224-4235. |
61 | LUO J, WANG Y Q, QI Q R, et al. Sinomenine improves embryo survival by regulating Th1/Th2 balance in a mouse model of recurrent spontaneous abortion[J]. Med Sci Monit, 2021, 27: e927709. |
62 | WANG W J, SUNG N, GILMAN-SACHS A, et al. T helper (Th) cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/tfh cells[J]. Front Immunol, 2020, 11: 2025. |
63 | LIMAGNE E, THIBAUDIN M, EUVRARD R, et al. Sirtuin-1 activation controls tumor growth by impeding Th17 differentiation via STAT3 deacetylation[J]. Cell Rep, 2017, 19(4): 746-759. |
64 | MARQUES H S, DE BRITO B B, DA SILVA F A F, et al. Relationship between Th17 immune response and cancer[J]. World J Clin Oncol, 2021, 12(10): 845-867. |
65 | NOVAKOVIC R, RAJKOVIC J, GOSTIMIROVIC M, et al. Resveratrol and reproductive health[J]. Life (Basel), 2022, 12(2): 294. |
66 | HUANG X Z, SUN J, CHEN G, et al. Resveratrol promotes diabetic wound healing via SIRT1-FOXO1-c-myc signaling pathway-mediated angiogenesis[J]. Front Pharmacol, 2019, 10: 421. |
67 | HANNAN N J, BROWNFOOT F C, CANNON P, et al. Resveratrol inhibits release of soluble fms-like tyrosine kinase (sFlt-1) and soluble endoglin and improves vascular dysfunction-implications as a preeclampsia treatment[J]. Sci Rep, 2017, 7(1): 1819. |
68 | OCHIAI A, KURODA K, OZAKI R, et al. Resveratrol inhibits decidualization by accelerating downregulation of the CRABP2-RAR pathway in differentiating human endometrial stromal cells[J]. Cell Death Dis, 2019, 10(4): 276. |
69 | KURODA K, OCHIAI A, BROSENS J J. The actions of resveratrol in decidualizing endometrium: acceleration or inhibition? [J]. Biol Reprod, 2020, 103(6): 1152-1156. |
70 | OCHIAI A, KURODA K, IKEMOTO Y, et al. Influence of resveratrol supplementation on IVF-embryo transfer cycle outcomes[J]. Reprod Biomed Online, 2019, 39(2): 205-210. |
71 | TULIPANO G. Integrated or independent actions of metformin in target tissues underlying its current use and new possible applications in the endocrine and metabolic disorder area[J]. Int J Mol Sci, 2021, 22(23): 13068. |
72 | GUO W R, LIU J, CHENG L D, et al. Metformin alleviates steatohepatitis in diet-induced obese mice in a SIRT1-dependent way[J]. Front Pharmacol, 2021, 12: 704112. |
73 | SONG Y M, LEE Y H, KIM J W, et al. Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMP-activated protein kinase-independent pathway[J]. Autophagy, 2015, 11(1): 46-59. |
74 | HUNG C H, CHAN S H, CHU P M, et al. Metformin regulates oxLDL-facilitated endothelial dysfunction by modulation of SIRT1 through repressing LOX-1-modulated oxidative signaling[J]. Oncotarget, 2016, 7(10): 10773-10787. |
75 | ZHANG Y, LIU W F, ZHONG Y Q, et al. Metformin corrects glucose metabolism reprogramming and NLRP3 inflammasome-induced pyroptosis via inhibiting the TLR4/NF-κB/PFKFB3 signaling in trophoblasts: implication for a potential therapy of preeclampsia[J]. Oxid Med Cell Longev, 2021, 2021: 1806344. |
76 | XU X X, ZHANG S S, LIN H L, et al. Metformin promotes regeneration of the injured endometrium via inhibition of endoplasmic reticulum stress-induced apoptosis[J]. Reprod Sci, 2019, 26(4): 560-568. |
77 | MOON J, LEE S Y, CHOI J W, et al. Metformin ameliorates Scleroderma via inhibiting Th17 cells and reducing mTOR-STAT3 signaling in skin fibroblasts[J]. J Transl Med, 2021, 19(1): 192. |
[1] | 杨文倩, 陈迟琪, 赵路, 曹力元, 夏一秋, 卢智刚, 郑俊克. 免疫抑制性受体LILRB2促进新型冠状病毒刺突蛋白介导的炎症过程[J]. 上海交通大学学报(医学版), 2022, 42(9): 1188-1196. |
[2] | 韩婷, 吕纯鑫, 卓萌, 夏青, 刘腾飞, 吴秀奇, 林晓琳, 肖秀英. 进展期胃癌免疫治疗不良反应的相关因素及预后分析[J]. 上海交通大学学报(医学版), 2022, 42(8): 1053-1061. |
[3] | 林家俞, 秦洁洁, 蒋玲曦. 肿瘤微环境中免疫细胞的代谢研究进展[J]. 上海交通大学学报(医学版), 2022, 42(8): 1122-1130. |
[4] | 李悦华, 李青峰, 谢芸. 脂肪来源间充质干细胞在自身免疫性疾病中的应用进展[J]. 上海交通大学学报(医学版), 2022, 42(8): 1131-1138. |
[5] | 阿婷曦, 邵春益, 傅瑶. 调节性T细胞在眼表疾病中作用的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(8): 1145-1150. |
[6] | 李昕雨, 左斌, 王文, 钮晓音, 翁震, 何杨. 脂联素在免疫性血小板减少症患者外周血中的水平及其对巨核细胞系分化的作用[J]. 上海交通大学学报(医学版), 2022, 42(7): 866-874. |
[7] | 卢雨, 王昊, 巴乾. 肠道菌群在肝癌发生发展及治疗中的作用研究进展[J]. 上海交通大学学报(医学版), 2022, 42(7): 939-944. |
[8] | 王昕芃, 王君颖, 蔡佳翌, 付婉彬, 钟华. 低剂量地西他滨对免疫性血小板减少症患者来源的骨髓间充质干细胞生物学行为的影响[J]. 上海交通大学学报(医学版), 2022, 42(6): 758-767. |
[9] | 张修齐, 沈柏用. 胰腺导管腺癌神经侵袭的细胞学机制研究进展[J]. 上海交通大学学报(医学版), 2022, 42(6): 833-838. |
[10] | 龚其雨, 陈磊. 多组学数据解析循环及浸润性B细胞在结直肠癌免疫微环境中的作用[J]. 上海交通大学学报(医学版), 2022, 42(4): 472-481. |
[11] | 许静轩, 杜少倩, 曹源, 王红霞, 黄伟翼. MMP14在胰腺癌中的表达及其与肿瘤免疫微环境特征的相关性研究[J]. 上海交通大学学报(医学版), 2022, 42(3): 312-322. |
[12] | 卫欣迪, 钮晓音. 滤泡辅助性T细胞在自身免疫病中作用的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(2): 218-224. |
[13] | 陈彬, 崔洪全, 杨懿瑾, 徐海燕, 张玲. 胃癌免疫相关长链非编码RNA预测模型的构建[J]. 上海交通大学学报(医学版), 2022, 42(10): 1394-1403. |
[14] | 杨辰玲, 周慧芳. PD-1/PD-L1通路在自身免疫性眼病中作用的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(1): 107-112. |
[15] | 王亦欢, 李若坤, 种欢欢, 严福华. 钆塞酸二钠增强磁共振成像在肝细胞癌生物学行为评估中的应用进展[J]. 上海交通大学学报(医学版), 2022, 42(1): 130-134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||