1 |
V'KOVSKI P, KRATZEL A, STEINER S, et al. Coronavirus biology and replication: implications for SARS-CoV-2[J]. Nat Rev Microbiol, 2021, 19(3): 155-170.
|
2 |
YAO H, SONG Y, CHEN Y, et al. Molecular architecture of the SARS-CoV-2 virus[J]. Cell, 2020, 183(3): 730-738.e13.
|
3 |
WALLS A C, PARK Y J, TORTORICI M A, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein[J]. Cell, 2020, 181(2): 281-292.e6.
|
4 |
HOFFMANN M, KLEINE-WEBER H, SCHROEDER S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181(2): 271-280.e8.
|
5 |
YAN R, ZHANG Y, LI Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2[J]. Science, 2020, 367(6485): 1444-1448.
|
6 |
BENTON D J, WROBEL A G, XU P, et al. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion[J]. Nature, 2020, 588(7837): 327-330.
|
7 |
WANG Q, ZHANG Y, WU L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2[J]. Cell, 2020, 181(4): 894-904. e9.
|
8 |
ZANG R, GOMEZ CASTRO M F, MCCUNE B T, et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes[J]. Sci Immunol, 2020, 5(47): eabc3582.
|
9 |
WANG K, CHEN W, ZHANG Z, et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells[J]. Signal Transduct Target Ther, 2020, 5(1): 283.
|
10 |
MORNIROLI D, GIANNÌ M L, CONSALES A, et al. Human sialome and coronavirus disease-2019 (COVID-19) pandemic: an understated correlation?[J]. Front Immunol, 2020, 11: 1480.
|
11 |
CANTUTI-CASTELVETRI L, OJHA R, PEDRO L D, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity[J]. Science, 2020, 370(6518): 856-860.
|
12 |
YANG X, YU Y, XU J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study[J]. Lancet Respir Med, 2020, 8(5): 475-481.
|
13 |
XU Z, SHI L, WANG Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome[J]. Lancet Respir Med, 2020, 8(4): 420-422.
|
14 |
SOY M, KESER G, ATAGÜNDÜZ P. Pathogenesis and treatment of cytokine storm in COVID-19[J]. Turk J Biol, 2021, 45(4): 372-389.
|
15 |
LI G, FAN Y, LAI Y, et al. Coronavirus infections and immune responses[J]. J Med Virol, 2020, 92(4): 424-432.
|
16 |
LU Q, LIU J, ZHAO S, et al. SARS-CoV-2 exacerbates proinflammatory responses in myeloid cells through C-type lectin receptors and Tweety family member 2[J]. Immunity, 2021, 54(6): 1304-1319.e9.
|
17 |
CHEN H M, VAN DER TOUW W, WANG Y S, et al. Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity[J]. J Clin Invest, 2018, 128(12): 5647-5662.
|
18 |
GU Y, CAO J, ZHANG X, et al. Receptome profiling identifies KREMEN1 and ASGR1 as alternative functional receptors of SARS-CoV-2[J]. Cell Res, 2022, 32(1): 24-37.
|
19 |
BOST P, GILADI A, LIU Y, et al. Host-viral infection maps reveal signatures of severe COVID-19 patients[J]. Cell, 2020, 181(7): 1475-1488.e12.
|
20 |
TANAKA T, NARAZAKI M, KISHIMOTO T. IL-6 in inflammation, immunity, and disease[J]. Cold Spring Harb Perspect Biol, 2014, 6(10): a016295.
|
21 |
VABRET N, BRITTON G J, GRUBER C, et al. Immunology of COVID-19: current state of the science[J]. Immunity, 2020, 52(6): 910-941.
|
22 |
GONG J, DONG H, XIA Q S, et al. Correlation analysis between disease severity and inflammation-related parameters in patients with COVID-19: a retrospective study[J]. BMC Infect Dis, 2020, 20(1): 963.
|
23 |
EVEREST H, STEVENSON-LEGGETT P, BAILEY D, et al. Known cellular and receptor interactions of animal and human coronaviruses: a review[J]. Viruses, 2022, 14(2): 351.
|
24 |
WANG W, TANG J, WEI F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China[J]. J Med Virol, 2020, 92(4): 441-447.
|
25 |
COSTELA-RUIZ V J, ILLESCAS-MONTES R, PUERTA-PUERTA J M, et al. SARS-CoV-2 infection: the role of cytokines in COVID-19 disease[J]. Cytokine Growth Factor Rev, 2020, 54: 62-75.
|
26 |
GUBERNATOROVA E O, GORSHKOVA E A, POLINOVA A I, et al. IL-6: relevance for immunopathology of SARS-CoV-2[J]. Cytokine Growth Factor Rev, 2020, 53: 13-24.
|
27 |
POTERE N, BATTICCIOTTO A, VECCHIÉ A, et al. The role of IL-6 and IL-6 blockade in COVID-19[J]. Expert Rev Clin Immunol, 2021, 17(6): 601-618.
|
28 |
DERAKHSHANI A, HEMMAT N, ASADZADEH Z, et al. Arginase 1 (Arg1) as an up-regulated gene in COVID-19 patients: a promising marker in COVID-19 immunopathy[J]. J Clin Med, 2021, 10(5): 1051.
|
29 |
ZUO J, DOWELL A C, PEARCE H, et al. Robust SARS-CoV-2-specific T cell immunity is maintained at 6 months following primary infection[J]. Nat Immunol, 2021, 22(5): 620-626.
|
30 |
JONES S A, HUNTER C A. Is IL-6 a key cytokine target for therapy in COVID-19?[J]. Nat Rev Immunol, 2021, 21(6): 337-339.
|
31 |
FERREIRA-GOMES M, KRUGLOV A, DUREK P, et al. SARS-CoV-2 in severe COVID-19 induces a TGF-β-dominated chronic immune response that does not target itself[J]. Nat Commun, 2021, 12(1): 1961.
|
32 |
KUDO T, HAYASHI Y, KUNIEDA K, et al. Persistent intrathecal interleukin-8 production in a patient with SARS-CoV-2-related encephalopathy presenting aphasia: a case report[J]. BMC Neurol, 2021, 21(1): 426.
|
33 |
HAN H, MA Q F, LI C, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors[J]. Emerg Microbes Infect, 2020, 9(1): 1123-1130.
|
34 |
TRIPATHY A S, VISHWAKARMA S, TRIMBAKE D, et al. Pro-inflammatory CXCL-10, TNF-α, IL-1β, and IL-6: biomarkers of SARS-CoV-2 infection[J]. Arch Virol, 2021, 166(12): 3301-3310.
|
35 |
GIAMARELLOS-BOURBOULIS E J, NETEA M G, ROVINA N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure[J]. Cell Host Microbe, 2020, 27(6): 992-1000.e3.
|
36 |
MOORE J B, JUNE C H. Cytokine release syndrome in severe COVID-19[J]. Science, 2020, 368(6490): 473-474.
|
37 |
LUO P, LIU Y, QIU L, et al. Tocilizumab treatment in COVID-19: a single center experience[J]. J Med Virol, 2020, 92(7): 814-818.
|
38 |
GAUTRET P, LAGIER J C, PAROLA P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial[J]. Int J Antimicrob Agents, 2020, 56(1): 105949.
|
39 |
WU D, YANG X O. TH17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor fedratinib[J]. J Microbiol Immunol Infect, 2020, 53(3): 368-370.
|