上海交通大学学报(医学版) ›› 2022, Vol. 42 ›› Issue (10): 1458-1465.doi: 10.3969/j.issn.1674-8115.2022.10.012
• 综述 • 上一篇
收稿日期:
2022-05-09
接受日期:
2022-09-19
出版日期:
2022-10-28
发布日期:
2022-12-02
通讯作者:
范瑛
E-mail:xinghaifan1997@163.com;fanyingsh@126.com
作者简介:
邢海帆(1997—),女,硕士生;电子信箱:xinghaifan1997@163.com。
基金资助:
Received:
2022-05-09
Accepted:
2022-09-19
Online:
2022-10-28
Published:
2022-12-02
Contact:
FAN Ying
E-mail:xinghaifan1997@163.com;fanyingsh@126.com
Supported by:
摘要:
肾小球疾病是导致慢性肾脏病和终末期肾功能衰竭的主要原因。了解肾小球疾病发生和发展的分子机制对于早期识别疾病危险因素、挽救肾功能具有重要意义。肾脏中复杂且高度分化的细胞组成是肾小球疾病研究面临的一大挑战,传统测序方法无法确定特定细胞的转录变化以及不同类型细胞间的相互作用。近年来,单细胞RNA测序(single-cell RNA sequencing, scRNA-seq )技术发展迅速,可用于研究肾脏、尿液以及血液等不同来源细胞群体中单个细胞的基因表达模式。将scRNA-seq应用于肾小球疾病有助于生成全面的肾脏细胞图谱,从细胞层面解析肾小球疾病的复杂机制,开发预警生物标志物和细胞特异性的治疗方法。该文就scRNA-seq技术在临床常见原发性和继发性肾小球疾病中的应用研究进展进行综述。
中图分类号:
邢海帆, 范瑛. 单细胞RNA测序应用于肾小球疾病研究的进展[J]. 上海交通大学学报(医学版), 2022, 42(10): 1458-1465.
XING Haifan, FAN Ying. Advances in single-cell RNA sequencing in glomerular diseases[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(10): 1458-1465.
Disease | Publi-cation Year | Author | Sample source | Sample number | Technology | Platform | Reference |
---|---|---|---|---|---|---|---|
DN | 2019 | FU, et al. | Glomerulus (Mouse) | 2 groups,n=3/group: eNOS-/- + Vehicle, eNOS-/- + STZ | scRNA-seq | Fluidigm C1 | [ |
2019 | WILSON, et al. | Nephrectomy | 3 diabetic nephropathy samples, 3 control samples | snRNA-seq | 10×Genomics | [ | |
2021 | ABEDINI, et al. | Urine | 17 urine samples from 5 subjects, 1 pooled sample from 10 healthy individuals | scRNA-seq | 10×Genomics | [ | |
2021 | WU,et al. | Kidney (Mouse) | 5 groups,n=2‒ 4/group: db/m+vehicle, db/db + vehicle, db/db + dapagliflflozin, db/db + irbesartan,db/db + dapagliflflozin+irbesartan | scRNA-seq | 10×Genomics | [ | |
2022 | WU,et al. | Kidney (Mouse) | 7 groups, two early time points/group, 70 mice in total: ReninAAV Unx db/db treated with Vehicle, Lisinopril, Rosiglitazone, JNJ-39933673, Lisinopril + JNJ-39933673, Lisinopril + rosiglitazone; LacZ AAV db/m | snRNA-seq | 10×Genomics | [ | |
RNA-seq | |||||||
LN | 2019 | ARAZI,et al. | Kidney biopsy | 24 lupus nephritis, 10 controls | scRNA-seq | CEL-Seq2 | [ |
Urine | 8 lupus nephritis | ||||||
PBMC | 10 lupus nephritis, 6 controls | scRNA-seq | 10×Genomics | ||||
RNA-seq | |||||||
2019 | DER, et al. | Kidney biopsy | 21 lupus nephritis, 3 controls | scRNA-seq | Fluidigm C1 | [ | |
Skin biopsy | 17 lupus nephritis, 3 controls | ||||||
PBMC | 8 lupus nephritis | ||||||
IgAN | 2020 | ZHENG, et al. | Kidney | 13 IgAN,6 nephropathy samples from controls | scRNA-seq | STRT-Seq | [ |
CD14+ PBMC | 5 IgAN, 5 controls | ||||||
2021 | TANG, et al. | Kidney biopsy | 4 IgAN, 1 control | scRNA-seq | 10×Genomics | [ | |
2021 | ZENG, et al. | PBMC | 10 IgAN, 6 controls | scRNA-seq | BD Rhapsody | [ | |
2022 | ZAMBRANO, et al. | Glomerulus (Mouse) | 5 gddY mice, 5 ddY mice | scRNA-seq | SMART-seq2 | [ | |
PMN | 2021 | XU,et al. | Kidney biopsy | 6 PMN, 2 controls | scRNA-seq | 10×Genomics | [ |
FSGS | 2021 | MENON, et al. | Kidney | 24 healthy single-cell samples | scRNA-seq | 10×Genomics | [ |
2021 | LATT, et al. | Urine | 23 urine cell samples from 12 subjects | scRNA-seq | 10×Genomics | [ |
表1 应用单细胞/单细胞核RNA测序技术的肾小球疾病研究汇总
Tab 1 Summary of glomerular disease studies applying single-cell/ single nucleus RNA sequencing technology
Disease | Publi-cation Year | Author | Sample source | Sample number | Technology | Platform | Reference |
---|---|---|---|---|---|---|---|
DN | 2019 | FU, et al. | Glomerulus (Mouse) | 2 groups,n=3/group: eNOS-/- + Vehicle, eNOS-/- + STZ | scRNA-seq | Fluidigm C1 | [ |
2019 | WILSON, et al. | Nephrectomy | 3 diabetic nephropathy samples, 3 control samples | snRNA-seq | 10×Genomics | [ | |
2021 | ABEDINI, et al. | Urine | 17 urine samples from 5 subjects, 1 pooled sample from 10 healthy individuals | scRNA-seq | 10×Genomics | [ | |
2021 | WU,et al. | Kidney (Mouse) | 5 groups,n=2‒ 4/group: db/m+vehicle, db/db + vehicle, db/db + dapagliflflozin, db/db + irbesartan,db/db + dapagliflflozin+irbesartan | scRNA-seq | 10×Genomics | [ | |
2022 | WU,et al. | Kidney (Mouse) | 7 groups, two early time points/group, 70 mice in total: ReninAAV Unx db/db treated with Vehicle, Lisinopril, Rosiglitazone, JNJ-39933673, Lisinopril + JNJ-39933673, Lisinopril + rosiglitazone; LacZ AAV db/m | snRNA-seq | 10×Genomics | [ | |
RNA-seq | |||||||
LN | 2019 | ARAZI,et al. | Kidney biopsy | 24 lupus nephritis, 10 controls | scRNA-seq | CEL-Seq2 | [ |
Urine | 8 lupus nephritis | ||||||
PBMC | 10 lupus nephritis, 6 controls | scRNA-seq | 10×Genomics | ||||
RNA-seq | |||||||
2019 | DER, et al. | Kidney biopsy | 21 lupus nephritis, 3 controls | scRNA-seq | Fluidigm C1 | [ | |
Skin biopsy | 17 lupus nephritis, 3 controls | ||||||
PBMC | 8 lupus nephritis | ||||||
IgAN | 2020 | ZHENG, et al. | Kidney | 13 IgAN,6 nephropathy samples from controls | scRNA-seq | STRT-Seq | [ |
CD14+ PBMC | 5 IgAN, 5 controls | ||||||
2021 | TANG, et al. | Kidney biopsy | 4 IgAN, 1 control | scRNA-seq | 10×Genomics | [ | |
2021 | ZENG, et al. | PBMC | 10 IgAN, 6 controls | scRNA-seq | BD Rhapsody | [ | |
2022 | ZAMBRANO, et al. | Glomerulus (Mouse) | 5 gddY mice, 5 ddY mice | scRNA-seq | SMART-seq2 | [ | |
PMN | 2021 | XU,et al. | Kidney biopsy | 6 PMN, 2 controls | scRNA-seq | 10×Genomics | [ |
FSGS | 2021 | MENON, et al. | Kidney | 24 healthy single-cell samples | scRNA-seq | 10×Genomics | [ |
2021 | LATT, et al. | Urine | 23 urine cell samples from 12 subjects | scRNA-seq | 10×Genomics | [ |
1 | BALZER M S, ROHACS T, SUSZTAK K. How many cell types are in the kidney and what do they do?[J]. Annu Rev Physiol, 2022, 84: 507-531. |
2 | 陈麒麟, 刘志红. 单细胞RNA测序在肾脏疾病研究中的应用[J]. 肾脏病与透析肾移植杂志, 2019, 28(4): 355-359. |
CHEN Q L, LIU Z H. Single-cell RNA-sequencing in kidney disease[J]. Chin J Nephrol Dial Transpl, 2019, 28(4): 355-359. | |
3 | 王梦洁, 董伟, 梁馨苓. 单细胞RNA测序在肾脏疾病研究中的应用与前景[J]. 临床肾脏病杂志, 2021, 21(8): 681-684. |
WANG M J, DONG W, LIANG X L. Applications and prospects of single-cell RNA sequencing for renal disease researches[J]. J Clin Nephrol, 2021, 21(8): 681-684. | |
4 | 王鑫瑶, 邓振领, 王悦. 单细胞RNA测序在肾脏领域的研究进展[J]. 临床肾脏病杂志, 2021, 21(2): 153-157. |
WANG X Y, DENG Z L, WANG Y. Research advances of single-cell RNA sequencing in kidney[J]. J Clin Nephrol, 2021, 21(2): 153-157. | |
5 | TANG F C, BARBACIORU C, WANG Y Z, et al. mRNA-Seq whole-transcriptome analysis of a single cell [J]. Nat Methods, 2009, 6(5): 377-382. |
6 | 操利超, 巴颖, 张核子. 单细胞测序方法研究进展[J]. 生物信息学, 2022, 20(2): 91-99. |
CAO L C, BA Y, ZHANG H Z. Recent progress in single cell sequencing[J]. Chinese Journal of Bioinformatics, 2022, 20(2): 91-99. | |
7 | ZHENG G X Y, TERRY J M, BELGRADER P, et al. Massively parallel digital transcriptional profiling of single cells[J]. Nat Commun, 2017, 8: 14049. |
8 | BIREY F, ANDERSEN J, MAKINSON C D, et al. Assembly of functionally integrated human forebrain spheroids[J]. Nature, 2017, 545(7652): 54-59. |
9 | BUENROSTRO J D, WU B, LITZENBURGER U M, et al. Single-cell chromatin accessibility reveals principles of regulatory variation[J]. Nature, 2015, 523(7561): 486-490. |
10 | REDMOND D, PORAN A, ELEMENTO O. Single-cell TCRseq: paired recovery of entire T-cell alpha and beta chain transcripts in T-cell receptors from single-cell RNAseq[J]. Genome Med, 2016, 8(1): 80. |
11 | STICKELS R R, MURRAY E, KUMAR P, et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2[J]. Nat Biotechnol, 2021, 39(3): 313-319. |
12 | VAN DEN BRINK S C, SAGE F, VÉRTESY Á, et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations[J]. Nat Methods, 2017, 14(10): 935-936. |
13 | WU H J, KIRITA Y, DONNELLY E L, et al. Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis[J]. J Am Soc Nephrol, 2019, 30(1): 23-32. |
14 | LU Y Q, YE Y T, YANG Q Q, et al. Single-cell RNA-sequence analysis of mouse glomerular mesangial cells uncovers mesangial cell essential genes[J]. Kidney Int, 2017, 92(2): 504-513. |
15 | LU Y Q, YE Y T, BAO W D N, et al. Genome-wide identification of genes essential for podocyte cytoskeletons based on single-cell RNA sequencing[J]. Kidney Int, 2017, 92(5): 1119-1129. |
16 | CHEN L H, LEE J W, CHOU C L, et al. Transcriptomes of major renal collecting duct cell types in mouse identified by single-cell RNA-seq[J]. Proc Natl Acad Sci USA, 2017, 114(46): e9989-e9998. |
17 | KARAISKOS N, RAHMATOLLAHI M, BOLTENGAGEN A, et al. A single-cell transcriptome atlas of the mouse Glomerulus[J]. J Am Soc Nephrol, 2018, 29(8): 2060-2068. |
18 | PARK J, SHRESTHA R, QIU C X, et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease[J]. Science, 2018, 360(6390): 758-763. |
19 | STEWART B J, FERDINAND J R, YOUNG M D, et al. Spatiotemporal immune zonation of the human kidney[J]. Science, 2019, 365(6460): 1461-1466. |
20 | DER E, RANABOTHU S, SURYAWANSHI H, et al. Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis[J]. JCI Insight, 2017, 2(9) : e93009. |
21 | ARAZI A, RAO D A, BERTHIER C C, et al. The immune cell landscape in kidneys of patients with lupus nephritis[J]. Nat Immunol, 2019, 20(7): 902-914. |
22 | DER E, SURYAWANSHI H, MOROZOV P, et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways[J]. Nat Immunol, 2019, 20(7): 915-927. |
23 | FAVA A, BUYON J, MOHAN C, et al. Integrated urine proteomics and renal single-cell genomics identify an IFN-γ response gradient in lupus nephritis[J]. JCI Insight, 2020, 5(12): e138345. |
24 | ZHANG T, LI H, VANARSA K, et al. Association of urine sCD163 with proliferative lupus nephritis, fibrinoid necrosis, cellular crescents and intrarenal M2 macrophages[J]. Front Immunol, 2020, 11: 671. |
25 | VANARSA K, SOOMRO S, ZHANG T, et al. Quantitative planar array screen of 1 000 proteins uncovers novel urinary protein biomarkers of lupus nephritis[J]. Ann Rheum Dis, 2020, 79(10): 1349-1361. |
26 | FAVA A, RAO D A, MOHAN C, et al. Urine proteomics and renal single-cell transcriptomics implicate interleukin-16 in lupus nephritis[J]. Arthritis Rheumatol, 2022, 74(5): 829-839. |
27 | DENG Y Y, ZHENG Y, LI D L, et al. Expression characteristics of interferon-stimulated genes and possible regulatory mechanisms in lupus patients using transcriptomics analyses[J]. EBioMedicine, 2021, 70: 103477. |
28 | FU J, AKAT K M, SUN Z G, et al. Single-cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic kidney disease[J]. J Am Soc Nephrol, 2019, 30(4): 533-545. |
29 | SEMBACH F E, AGIDIUS H M, FINK L N, et al. Integrative transcriptomic profiling of a mouse model of hypertension-accelerated diabetic kidney disease[J]. Dis Model Mech, 2021, 14(10): dmm049086. |
30 | WU C H, TAO Y J, LI N, et al. Prediction of cellular targets in diabetic kidney diseases with single-cell transcriptomic analysis of db/db mouse kidneys[J]. J Cell Commun Signal, 2022.doi: 10.1007/s12079-022-006-85-z. |
31 | WILSON P C, WU H J, KIRITA Y, et al. The single-cell transcriptomic landscape of early human diabetic nephropathy[J]. Proc Natl Acad Sci USA, 2019, 116(39): 19619-19625. |
32 | WILSON P C, MUTO Y, WU H J, et al. Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression[J]. Nat Commun, 2022, 13(1): 5253. |
33 | ABEDINI A, ZHU Y O, CHATTERJEE S, et al. Urinary single-cell profiling captures the cellular diversity of the kidney[J]. J Am Soc Nephrol, 2021, 32(3): 614-27. |
34 | WU J S, SUN Z G, YANG S M, et al. Kidney single-cell transcriptome profile reveals distinct response of proximal tubule cells to SGLT2i and ARB treatment in diabetic mice[J]. Mol Ther, 2022, 30(4): 1741-1753. |
35 | WU H J, GONZALEZ VILLALOBOS R, YAO X, et al. Mapping the single-cell transcriptomic response of murine diabetic kidney disease to therapies[J]. Cell Metab, 2022, 34(7): 1064-1078.e6. |
36 | WYATT R J, JULIAN B A. IgA nephropathy[J]. N Engl J Med, 2013, 368(25): 2402-2414. |
37 | ZHENG Y, LU P, DENG Y Y, et al. Single-cell transcriptomics reveal immune mechanisms of the onset and progression of IgA nephropathy[J]. Cell Rep, 2020, 33(12): 108525. |
38 | TANG R, MENG T, LIN W, et al. A partial picture of the single-cell transcriptomics of human IgA nephropathy[J]. Front Immunol, 2021, 12: 645988. |
39 | ZAMBRANO S, HE LQ, KANO T, et al. Molecular insights into the early stage of glomerular injury in IgA nephropathy using single-cell RNA sequencing[J]. Kidney Int, 2022, 101(4): 752-765. |
40 | ZENG H H, WANG L, LI J J, et al. Single-cell RNA-sequencing reveals distinct immune cell subsets and signaling pathways in IgA nephropathy[J]. Cell Biosci, 2021, 11(1): 203. |
41 | MENON R, OTTO E A, HOOVER P, et al. Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker[J]. JCI Insight, 2020, 5(6): e133267. |
42 | LATT K Z, HEYMANN J, JESSEE J H, et al. Urine single-cell RNA sequencing in focal segmental glomerulosclerosis reveals inflammatory signatures[J]. Kidney Int Rep, 2021, 7(2): 289-304. |
43 | XU J, SHEN C J, LIN W, et al. Single-cell profiling reveals transcriptional signatures and cell-cell crosstalk in anti-PLA2R positive idiopathic membranous nephropathy patients[J]. Front Immunol, 2021, 12: 683330. |
44 | SEALFON R, MARIANI L, AVILA-CASADO C, et al. Molecular characterization of membranous nephropathy[J]. J Am Soc Nephrol, 2022, 33(6): 1208-1221. |
45 | KAYA-OKUR H S, WU S J, CODOMO C A, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells[J]. Nat Commun, 2019, 10(1): 1930. |
46 | SMALLWOOD S A, LEE H J, ANGERMUELLER C, et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity[J]. Nat Methods, 2014, 11(8): 817-820. |
47 | NAGANO T, LUBLING Y, STEVENS T J, et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure[J]. Nature, 2013, 502(7469): 59-64. |
48 | STOECKIUS M, HAFEMEISTER C, STEPHENSON W, et al. Simultaneous epitope and transcriptome measurement in single cells[J]. Nat Methods, 2017, 14(9): 865-868. |
49 | PARK J, LIU C L, KIM J, et al. Understanding the kidney one cell at a time[J]. Kidney Int, 2019, 96(4): 862-870. |
50 | YANG C, XIA S, ZHANG W, et al. Modulation of Atg genes expression in aged rat liver, brain, and kidney by caloric restriction analyzed via single-nucleus/cell RNA sequencing[J]. Autophagy, 2022: 2022Jun2310. |
51 | DENG Y Y, DA J J, YU J L, et al. Single-cell RNA sequencing data analysis suggests the cell-cell interaction patterns of the pituitary-kidney axis[J]. Sci Rep, 2022, 12(1): 11147. |
52 | CHEN J Y, HUANG X R, YANG F Y, et al. Single-cell RNA sequencing identified novel Nr4a1+ Ear2+ anti-inflammatory macrophage phenotype under myeloid-TLR4 dependent regulation in anti-glomerular basement membrane (GBM) crescentic glomerulonephritis (cGN)[J]. Adv Sci (Weinh), 2022, 9(18): e2200668. |
53 | GUJARATI N A, LEONARDO A R, VASQUEZ J M, et al. Loss of functional SCO2 attenuates oxidative stress in diabetic kidney disease[J]. Diabetes, 2021. doi: 10.2337/db21-0316. |
[1] | 戴芹, 王伟铭. IgA肾病细胞模型中的炎症表达及丙戊酸钠的抗炎作用[J]. 上海交通大学学报(医学版), 2022, 42(6): 751-757. |
[2] | 李雨晨, 白丽莲, 黄荷凤, 刘欣梅. 人胸腺基质发育及退化的单细胞转录组分析[J]. 上海交通大学学报(医学版), 2021, 41(7): 865-875. |
[3] | 刘音, 杨涛, 谢裕赛, 王玉柱. 基于GEO数据库筛选狼疮性肾炎的关键基因和信号通路[J]. 上海交通大学学报(医学版), 2021, 41(6): 749-755. |
[4] | 张佳思, 邹春波, 卢宇, 陈茜, 张伟亚, 何姣姣. 血脂蛋白磷脂酶A2和中性粒细胞明胶酶相关脂质运载蛋白在诊断早期糖尿病肾病中的价值[J]. 上海交通大学学报(医学版), 2021, 41(6): 770-775. |
[5] | 罗嘉强, 赵亮宇, 姚晨成, 朱子珏, 邢晓宇, 李朋, 田汝辉, 陈慧兴, 孙杰, 李铮. 基于单细胞RNA测序解析人与小鼠睾丸中SARS-CoV-2相关受体的时空表达特征[J]. 上海交通大学学报(医学版), 2021, 41(4): 421-426. |
[6] | 马燕如, 季林华, 童天颖, 严宇青, 沈超琴, 张昕雨, 曹颖颖, 洪洁, 陈豪燕. 基于单细胞RNA测序的结直肠癌预后预测模型的建立和验证[J]. 上海交通大学学报(医学版), 2021, 41(2): 159-165. |
[7] | 姜梦迪, 张文. 糖尿病肾病中的组蛋白修饰与靶向干预的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(1): 103-107. |
[8] | 黄冠文, 包继文, 李子扬, 张敏芳, 周文彦, 王琴, 倪兆慧, 王玲. 可溶性白介素2受体和肿瘤坏死因子α对狼疮性肾炎活动度的预测价值[J]. 上海交通大学学报(医学版), 2021, 41(1): 55-61. |
[9] | 戴 芹1,王伟铭2. 组蛋白乙酰化在IgA肾病发病中的作用[J]. 上海交通大学学报(医学版), 2020, 40(8): 1063-1068. |
[10] | 季垠宏,任 红. 利妥昔单抗治疗局灶节段性肾小球硬化症机制的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(5): 693-697. |
[11] | 丁 蕾1, 2,高彩霞1, 2,刘兆远1, 2,陈 磊1, 2. 少量细胞输入的自制转录组测序文库构建试剂评测[J]. 上海交通大学学报(医学版), 2020, 40(4): 472-. |
[12] | 张伟然1, 2,林雪峰3,李 鑫2,张 浩2,王 猛2,孙 伟2,韩兴鹏2,孙大强1, 4. 转录组分析鉴定肺腺癌潜在的生物标志物[J]. 上海交通大学学报(医学版), 2020, 40(12): 1598-1606. |
[13] | 王婷婷 1, 2,李明杰 1,林宁 1,钮忆欣 1,简蔚霞 1,苏青 1. 血清高尿酸水平与住院糖尿病患者白蛋白尿短期进展的关系研究[J]. 上海交通大学学报(医学版), 2019, 39(7): 754-. |
[14] | 孔凌云,蒋更如. 不同肾功能进展IgA肾病患者血清IgA1对人肾小球系膜细胞增殖及TGF-β1表达的影响[J]. 上海交通大学学报(医学版), 2018, 38(6): 647-. |
[15] | 杨小茜 1,谢静远 1, 2,牟姗 2, 3. 利妥昔单克隆抗体治疗原发性肾小球肾炎的应用进展[J]. 上海交通大学学报(医学版), 2018, 38(3): 333-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||