1 |
CAPPADOCIA L, LIMA C D. Ubiquitin-like protein conjugation: structures, chemistry, and mechanism[J]. Chem Rev, 2018, 118(3): 889-918.
|
2 |
HE X Y, RICEBERG J, SOUCY T, et al. Probing the roles of SUMOylation in cancer cell biology by using a selective SAE inhibitor[J]. Nat Chem Biol, 2017, 13(11): 1164-1171.
|
3 |
SEELER J S, DEJEAN A. SUMO and the robustness of cancer[J]. Nat Rev Cancer, 2017, 17(3): 184-197.
|
4 |
KROONEN J S, VERTEGAAL A C O. Targeting SUMO signaling to wrestle cancer[J]. Trends Cancer, 2021, 7(6): 496-510.
|
5 |
FLOTHO A, MELCHIOR F. Sumoylation: a regulatory protein modification in health and disease[J]. Annu Rev Biochem, 2013, 82: 357-385.
|
6 |
KUKKULA A, OJALA V K, MENDEZ L M, et al. Therapeutic potential of targeting the SUMO pathway in cancer[J]. Cancers, 2021, 13(17): 4402.
|
7 |
LANGSTON S P, GROSSMAN S, ENGLAND D, et al. Discovery of TAK-981, a first-in-class inhibitor of SUMO-activating enzyme for the treatment of cancer[J]. J Med Chem, 2021, 64(5): 2501-2520.
|
8 |
LI Y J, DU L, WANG J H, et al. Allosteric inhibition of ubiquitin-like modifications by a class of inhibitor of SUMO-activating enzyme[J]. Cell Chem Biol, 2019, 26(2): 278-288.e6.
|
9 |
FUKUDA I, ITO A, HIRAI G, et al. Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate[J]. Chem Biol, 2009, 16(2): 133-140.
|
10 |
TAKEMOTO M, KAWAMURA Y, HIROHAMA M, et al. Inhibition of protein SUMOylation by davidiin, an ellagitannin from Davidia involucrata[J]. J Antibiot, 2014, 67(4): 335-338.
|
11 |
GOEL S, ULAHANNAN S V, OLSZANSKI A J, et al. A phase 1b, multicenter, dose-escalation study of subasumstat (TAK-981) in combination with pembrolizumab in patients (pts) with advanced solid tumors[J]. J Clin Oncol, 2022, 40(16_suppl): 2506.
|
12 |
NI D, LI Y, QIU Y R, et al. Combining allosteric and orthosteric drugs to overcome drug resistance[J]. Trends Pharmacol Sci, 2020, 41(5): 336-348.
|
13 |
LI S, ZHANG J M, LU S Y, et al. The mechanism of allosteric inhibition of protein tyrosine phosphatase 1B[J]. PLoS One, 2014, 9(5): e97668.
|
14 |
LV Z Y, YUAN L M, ATKISON J H, et al. Molecular mechanism of a covalent allosteric inhibitor of SUMO E1 activating enzyme[J]. Nat Commun, 2018, 9(1): 5145.
|
15 |
RAN X, GESTWICKI J E. Inhibitors of protein-protein interactions (PPIs): an analysis of scaffold choices and buried surface area[J]. Curr Opin Chem Biol, 2018, 44: 75-86.
|
16 |
PIERCE M M, RAMAN C S, NALL B T. Isothermal titration calorimetry of protein-protein interactions[J]. Methods, 1999, 19(2): 213-221.
|
17 |
MOERKE N J. Fluorescence polarization (FP) assays for monitoring peptide-protein or nucleic acid-protein binding[J]. Curr Protoc Chem Biol, 2009, 1(1): 1-15.
|
18 |
OLSEN S K, CAPILI A D, LU X Q, et al. Active site remodelling accompanies thioester bond formation in the SUMO E1[J]. Nature, 2010, 463(7283): 906-912.
|
19 |
WANG J H, CHEN Y. Role of the Zn2+ motif of E1 in SUMO adenylation[J]. J Biol Chem, 2010, 285(31): 23732-23738.
|