收稿日期: 2021-09-03
网络出版日期: 2022-03-17
基金资助
中央高校基本科研业务费专项资金资助(22120210569);上海同济医院国家自然科学基金培育项目(TJ2025)
Research progress and development trend of lower extremity exoskeleton rehabilitation robot
Received date: 2021-09-03
Online published: 2022-03-17
Supported by
Fundamental Research Funds for the Central Universities(22120210569);Fostering Project of the National Natural Science Foundation of China in Shanghai Tongji Hospital(TJ2025)
韩稷钰 , 王衍鸿 , 万大千 . 下肢外骨骼康复机器人的研究进展及发展趋势[J]. 上海交通大学学报(医学版), 2022 , 42(2) : 241 -246 . DOI: 10.3969/j.issn.1674-8115.2022.02.017
Lower limb motor dysfunction caused by various causes is an important public health problem in the world today. Lower extremity exoskeleton rehabilitation robot is a new type of wearable bionic device, which is mainly used to realize the standing and walking of patients with lower extremity motor dysfunction. It is a hot research topic in rehabilitation medicine at present. By reviewing the history of lower extremity exoskeleton rehabilitation robot, some breakthroughs and developments are found to have been made in this field in recent years. In the future, if we can overcome the technical problems such as portability, intelligence and modularization, it will be possible to maximize the recovery of patients with lower limb dysfunction. In this paper, the key technologies and clinical applications of wearable lower extremity exoskeleton rehabilitation robot are reviewed comprehensively, and new prospects for the research and development in this field are proposed.
1 | ORTLIEB A, BOURI M, BAUD R, et al. An assistive lower limb exoskeleton for people with neurological gait disorders[C]//2017 International Conference on Rehabilitation Robotics (ICORR). July, 17-20, 2017, London, United Kingdom. New York: IEEE, 2017: 441-446. |
2 | BOOTH F W, ROBERTS C K, LAYE M J. Lack of exercise is a major cause of chronic diseases[J]. Compr Physiol, 2012, 2(2): 1143-1211. |
3 | KNIGHT J A. Physical inactivity: associated diseases and disorders [J]. Ann Clin Lab Sci, 2012, 42(3): 320-337. |
4 | BAYLOR C, YORKSTON K M, JENSEN M P, et al. Scoping review of common secondary conditions after stroke and their associations with age and time post stroke [J]. Top Stroke Rehabil, 2014, 21(5): 371-382. |
5 | SEZER N, AKKU? S, U?URLU F G. Chronic complications of spinal cord injury [J]. World J Orthop, 2015, 6(1): 24-33. |
6 | JENSEN M P, TRUITT A R, SCHOMER K G, et al. Frequency and age effects of secondary health conditions in individuals with spinal cord injury: a scoping review [J]. Spinal Cord, 2013, 51(12): 882-892. |
7 | 魏小东, 孟青云, 喻洪流, 等. 下肢外骨骼机器人研究进展[J]. 中国康复医学杂志,?2019,?34(4): 491-495. |
8 | 万大千, 徐义明, 白跃宏. 下肢外骨骼康复机器人的研究与进展[J]. 中国组织工程研究与临床康复, 2011, 15(52): 9855-9858. |
9 | BONAIUTI D, ARIOLI GF, DIANA G, et al. SIMFER rehabilitation treatment guidelines in postmenopausal and senile osteoporosis [J]. Eura Medicophys, 2005, 41(4): 315-337. |
10 | ORIMO H, NAKAMURA T,?HOSOI T,?et al. Japanese 2011 guidelines for prevention and treatment of osteoporosis: executive summary [J]. Arch Osteoporos, 2012, 7(1): 3-20. |
11 | SUGIOKA Y, KOIKE T. Absolute risk for fracture and WHO guideline. Fall and fracture in elderly people: risk factors and strategies for prevention [J]. Clin Calcium, 2007, 17(7): 1059-1065. |
12 | 王海莲. 人体下肢运动意图的脑机多源感知方法研究[D]. 西安: 西北工业大学, 2018. |
13 | 李根生, 侣国宁, 徐飞. 下肢外骨骼机器人控制策略研究进展[J]. 中国康复医学杂志, 2018, 33(12): 1488-1494. |
14 | 周伟杰, 韩亚丽, 朱松青, 等. 柔性外骨骼助力机器人发展现状综述[J]. 南京工程学院学报(自然科学版), 2019, 17(1): 31-38. |
15 | HUO W,?MOHAMMED S,?MORENO J C,?et al. Lower limb wearable robots for assistance and rehabilitation: a state of the art [J]. IEEE Syst J, 2017, 10(3): 1068-1081. |
16 | 李静, 朱凌云, 苟向锋. 下肢外骨骼康复机器人及其关键技术研究[J]. 医疗卫生装备, 2018,?39(8): 95-100. |
17 | 范渊杰. 基于sEMG与交互力等多源信号融合的下肢外骨骼康复机器人及其临床实验研究[D]. 上海: 上海交通大学, 2014. |
18 | 岳敬伟. 脑机协调控制理论与关键技术研究[D]. 长沙: 国防科学技术大学, 2015. |
19 | LEEB R, SAGHA H, CHAVARRIAGA R, et al. A hybrid brain-computer interface based on the fusion of electroence philographic and electromyographic activities [J]. Neural Eng, 2011, 8(2): 25011-25016. |
20 | 梓亮. 电液外骨骼机器人电源能量管理技术研究[D]. 杭州: 浙江大学, 2019. |
21 | 张向刚, 秦开宇, 石宇亮. 人体外骨骼服技术综述[J]. 计算机科学, 2015, 42(8): 1-6. |
22 | TEFERTILLER C, HAYS K, JONES J, et al. Initial outcomes from a multicenter study utilizing the Indego powered exoskeleton in spinal cord injury [J]. Top Spinal Cord Inj Rehabil, 2018, 24(1):78-85. |
23 | HARTIGAN C, KANDILAKIS C, DALLEY S, et al. Mobility outcomes following five training sessions with a powered exoskeleton [J]. Top Spinal Cord Inj Rehabil, 2015, 21(2): 93-99. |
24 | QUINTERO H A, FARRIS R J, GOLDFARB M. A method for the autonomous control of lower limb exo-skeletons for persons with paraplegia [J]. J Med Device, 2012, 6(4): 0410031-0410036 |
25 | HA K H, MURRAY S A, GOLDFARB M. An approach for the cooperative control of FES with a powered exoskeleton during level walking for persons with paraplegia [J]. IEEE Trans Neural Syst Rehabil Eng, 2016, 24(4): 455-466. |
26 | PAOLO M,?FEDERICO D S,?MARCO C,?et al. Neurore-habilitation in paraplegic patients with an active powered exoskeleton Ekso [J]. Digital Med, 2016, 2(4): 163-168. |
27 | MATTHEW R P, MICA E J, MEINHOLD W,?et al. Introduction and initial exploration of an active/passive exoskeleton framework for portable assistance[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sep 28-Oct 2, 2015, Hamburg, Germany. New York: IEEE, 2015: 5351-5356. |
28 | HANINGER K,?LU J K,?TOMIZUKA M. Motion control of series-elastic actuators[C]//2016 American Control Conference (ACC), July 6-8, 2016, Boston, MA, USA. New York: IEEE, 2016: 4373-4378. |
29 | PANIZZOLO FA,?GALIANA I,?ASBECK AT,?et al. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking [J]. J Neuroeng Rehabil, 2016, 13(1): 43. |
30 | GRIMMER M, QUINLIVAN BT, LEE S, et al. Comparison of ankle moment inspired and ankle positive power inspired controllers for a multi-articular soft exosuit for walking assistance[C]//GONZáLEZ-VARGAS J, IBá?EZ J, CONTRERAS-VIDAL J, et al. Wearable robotics: challenges and trends. Proceedings of the 2nd International Symposium on Wearable Robotics, WeRob2016, October 18-21, 2016, Segovia, Spain. Berlin: Springer, 2017: 337-341. |
31 | SANKAI Y. Leading edge of cybernics?robot suit HAL [C]//SICE-ICASE 2006 International Joint Conference, July 16-21, 2006, Vancouver, BC, Canada. New York: IEEE, 2006: 1-2. |
32 | KYOUSUKE G, KOTANI N, HIROYUKI F,?et al. Effectiveness of the single-joint HAL?robot suit for rehabilitation afterorthopedicsurgery[J]. Physiotherapy, 2015, 101: e806-e807. |
33 | KADONE H, KUBOTA S, ABE T, et al. Muscular activity modulation during post-operative walking with hybrid assistive limb (HAL) in a patient with thoracic myelopathy due to ossification of posterior longitudinal ligament: a case report[J]. Front Neurol. 2020, 11: 102. |
34 | TANABE S, SAITOH E,?HIRRANO S,?et al. Design of the wearable power-assist locomotor?WPAL?for paraplegic gait reconstruction [J]. Disabil Rehabi Assist Technol, 2013, 8(1): 84-91. |
35 | ESQUENAZI A,?TALATY M,?PACKEL A,?et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury[J]. Am J Phys Med Rehabil, 2012, 91(11): 911-921. |
36 | PRASSLER E, BARONCELLI A. Team ReWalk ranked first in the cybathlon 2016 exoskeleton final [industrial activities][J]. IEEE Rob Autom Mag, 2017, 24(4): 8-10. |
37 | AWAD L N, ESQUENAZI A, FRANCISCO G E, et al. The ReWalk ReStoreTM soft robotic exosuit: a multi-site clinical trial of the safety, reliability, and feasibility of exosuit-augmented post-stroke gait rehabilitation[J]. J Neuroeng Rehabil, 2020, 17(1): 80. |
38 | WANG S, DIJK WVAN, KOOIJ HVAN DER. Spring uses in exoskeleton actuation design[C]. IEEE Int Conf Rehabil Robot, 29 June-1 July 2011, Zurich, Switzerland. New York: IEEE, 2011: 5975471. |
39 | TECHNAID. Robotic Exoskeleton Exo-H3 2021 [EB/OL].?[2021-09-03]. https://www.technaid.com/products/robotic-exoskeleton-exo-exoesqueleto-h3/. |
40 | RODRIGUEZ-UGARTE M S, Iá?EZ E, ORTIZ-GARCIA M,?et al. Effects of tDCS on real-time BCI detection of pedaling motor imagery [J]. Sensors, 2018, 18(4): 1136. |
41 | 北京大艾机器人科技有限公司. AiLegs产品介绍[EB/OL]. [2021-09-03]. https://www.ai-robotics.cn/products/ailegs. |
42 | 上海傅利叶智能科技有限公司. ExoMotusTM下肢康复机器人系列产品[EB/OL]. [2020-09-03]. https://www.fftai.cn/product/X2.php. |
43 | 靳兴来. 液压驱动下肢外骨骼机器人摆动相控制系统研究[D]. 杭州: 浙江大学, 2017. |
44 | 奚如如. 套索驱动半被动下肢助力外骨骼研究[D]. 南京: 东南大学, 2017. |
45 | 张超. 下肢助力外骨骼机器人研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
46 | CHEN B,?ZHONG C H,?ZHAO X,?et al. Reference joint trajectories generation of CUHK-EXO exoskeleton for system balance in walking assistance [J]. IEEE Access, 2019, (7): 33809-33821. |
47 | HE Y,?LI N,?WANG C,?et al. Development of a novel autonomous lower extremity exoskeleton robot for walking assistance [J]. Front Inform Tech El, 2019, 20(3): 318-329. |
48 | RODRíGUEZ-FERNáNDEZ A, LOBO-PRAT J, FONT-LLAGUNES J M. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments [J]. J Neuroeng Rehabil, 2021, 18(1): 22. |
49 | TAN K, KOYAMA S, SAKURAI H, et al. Wearable robotic exoskeleton for gait reconstruction in patients with spinal cord injury: A literature review [J]. J Orthop Transl, 2021, 28: 55-64. |
50 | 霍金月, 喻洪流, 王峰, 等. 穿戴式下肢外骨骼助行机器人系统研究[J]. 中国康复理论与实践, 2019, 25(4): 481-486. |
/
〈 |
|
〉 |