收稿日期: 2021-10-15
网络出版日期: 2022-05-09
基金资助
国家重点研发计划(2020YFC2003904);国家自然科学基金(81770953);上海市第一人民医院临床研究创新团队项目(CTCCR-2018B01);上海交通大学“交大之星”计划医工交叉研究基金(YG2021ZD18)
Research progress of non-coding RNA in myopia
Received date: 2021-10-15
Online published: 2022-05-09
Supported by
National Key R&D Program of China(2020YFC2003904);National Natural Science Foundation of China(81770953);Clinical Research Innovation Plan of Shanghai General Hospital(CTCCR-2018B01);Shanghai Jiao Tong University Medical Engineering Cross Research(YG2021ZD18)
非编码RNA是一类无法借由翻译形成蛋白质的RNA,包括微RNA(microRNA,miRNA )、长链非编码RNA(long non-coding RNA,lncRNA)和环状RNA(circular RNA,circRNA)等,曾被认为是“转录噪音”。研究发现非编码RNA参与许多人类疾病病理生理过程,包括细胞的增殖、分化、凋亡及胚胎发育等。近年来发现近视患者及近视动物模型的巩膜组织、视网膜色素上皮细胞(retinal pigment epithelium,RPE)、房水组织存在非编码RNA表达谱变化。非编码RNA异常表达可能通过调节巩膜细胞外基质重塑过程、调整脉络膜血流及厚度来影响近视的发生发展。因此,该文围绕非编码RNA在近视领域的研究进展进行综述,以期为近视的诊疗提供全新的方向和思路。
陈威存 , 苑影 , 柯碧莲 . 近视相关非编码RNA的研究进展[J]. 上海交通大学学报(医学版), 2022 , 42(3) : 369 -374 . DOI: 10.3969/j.issn.1674-8115.2022.03.016
Non-coding RNA is a type of RNA that cannot be translated into protein, which was once considered “transcriptional noise”, including microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). Research has found that non-coding RNA is involved in the physiological and pathological processes of several human diseases, such as cell proliferation, differentiation, apoptosis, and embryonic development. Recently, it has been considered that the expression profile changes of non-coding RNA in scleral tissue, retinal pigment epithelium cells (RPE), and aqueous humor of myopia patients and myopia animal models. The differential expression of non-coding RNA may contribute to the development of myopia by regulating the scleral extracellular matrix remodeling process, and choroidal blood flow and thickness. Therefore, this article aims to review the research progress in non-coding RNA of myopia to provide new directions and ideas for the diagnosis and treatment of myopia in the future.
Key words: non-coding RNA; microRNA; long non-coding RNA; circRNA; myopia
1 | BORKIEWICZ L, KALAFUT J, DUDZIAK K, et al. Decoding lncRNAs[J]. Cancers (Basel), 2021, 13(11). |
2 | LASDA E, PARKER R. Circular RNAs: diversity of form and function[J]. RNA, 2014, 20(12): 1829-1842. |
3 | JAN C, XU R, LUO D, et al. Association of visual impairment with economic development among Chinese schoolchildren[J]. JAMA Pediatr, 2019, 173(7): e190914. |
4 | SUN J, ZHOU J, ZHAO P, et al. High prevalence of myopia and high myopia in 5 060 Chinese university students in Shanghai[J]. Invest Ophthalmol Vis Sci, 2012, 53(12): 7504-7509. |
5 | MORGAN I G, FRENCH A N, ASHBY R S, et al. The epidemics of myopia: aetiology and prevention[J]. Prog Retin Eye Res, 2018, 62: 134-149. |
6 | HOLDEN B A, FRICKE T R, WILSON D A, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042. |
7 | FLITCROFT D I. The complex interactions of retinal, optical and environmental factors in myopia aetiology[J]. Prog Retin Eye Res, 2012, 31(6): 622-660. |
8 | OHNO-MATSUI K, LAI T Y, LAI C C, et al. Updates of pathologic myopia[J]. Prog Retin Eye Res, 2016, 52: 156-187. |
9 | MENG W, BUTTERWORTH J, MALECAZE F, et al. Axial length of myopia: a review of current research[J]. Ophthalmologica, 2011, 225(3): 127-134. |
10 | RYMER J, WILDSOET C F. The role of the retinal pigment epithelium in eye growth regulation and myopia: a review[J]. Vis Neurosci, 2005, 22(3): 251-261. |
11 | HARPER A R, SUMMERS J A. The dynamic sclera: extracellular matrix remodeling in normal ocular growth and myopia development[J]. Exp Eye Res, 2015, 133: 100-111. |
12 | BAIRD P N, SAW S M, LANCA C, et al. Myopia[J]. Nat Rev Dis Primers, 2020, 6(1): 99. |
13 | GREGORY R I, CHENDRIMADA T P, COOCH N, et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing[J]. Cell, 2005, 123(4): 631-640. |
14 | AMBROS V. microRNAs: tiny regulators with great potential[J]. Cell, 2001, 107(7): 823-826. |
15 | LEWIS B P, BURGE C B, BARTEL D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell, 2005, 120(1): 15-20. |
16 | MENS M M J, GHANBARI M. Cell cycle regulation of stem cells by microRNAs[J]. Stem Cell Rev Rep, 2018, 14(3): 309-322. |
17 | METLAPALLY R, GONZALEZ P, HAWTHORNE F A, et al. Scleral micro-RNA signatures in adult and fetal eyes[J]. PLoS One, 2013, 8(10): e78984. |
18 | TANAKA Y, KURIHARA T, HAGIWARA Y, et al. Ocular-component-specific miRNA expression in a murine model of lens-induced myopia[J]. Int J Mol Sci, 2019, 20(15). DOI:10.3390/ijms20153629 |
19 | GUO D, DING M, SONG X, et al. Regulatory roles of differentially expressed microRNAs in metabolic processes in negative lens-induced myopia Guinea pigs[J]. BMC Genomics, 2020, 21(1): 13. |
20 | METLAPALLY R, PARK H N, CHAKRABORTY R, et al. Genome-wide scleral micro- and messenger-RNA regulation during myopia development in the mouse[J]. Invest Ophthalmol Vis Sci, 2016, 57(14): 6089-6097. |
21 | TKATCHENKO A V, LUO X, TKATCHENKO T V, et al. Large-scale microRNA expression profiling identifies putative retinal miRNA-mRNA signaling pathways underlying form-deprivation myopia in mice[J]. PLoS One, 2016, 11(9): e0162541. |
22 | MEI F, WANG J, CHEN Z, et al. Potentially important microRNAs in form-deprivation myopia revealed by bioinformatics analysis of microRNA profiling[J]. Ophthalmic Res, 2017, 57(3): 186-193. |
23 | LIU S, CHEN H, MA W, et al. Non-coding RNAs and related molecules associated with form-deprivation myopia in mice[J]. J Cell Mol Med, 2022, 26(1): 186-194. |
24 | GUGGENHEIM J A, MCBRIEN N A. Form-deprivation myopia induces activation of scleral matrix metalloproteinase-2 in tree shrew[J]. Invest Ophthalmol Vis Sci, 1996, 37(7): 1380-1395. |
25 | ZHOU X, JI F, AN J, et al. Experimental murine myopia induces collagen type Iα1 (COL1A1) DNA methylation and altered COL1A1 messenger RNA expression in sclera[J]. Mol Vis, 2012, 18: 1312-1324. |
26 | ZHANG J S, DA W J, ZHU G Y, et al. The expression of cytokines in aqueous humor of high myopic patients with cataracts[J]. Mol Vis, 2020, 26: 150-157. |
27 | XIE M, LI Y, WU J, et al. Genetic variants in miR-29a associated with high myopia[J]. Ophthalmic Genet, 2016, 37(4): 456-458. |
28 | ZHANG Y, HU D N, ZHU Y, et al. Regulation of matrix metalloproteinase-2 secretion from scleral fibroblasts and retinal pigment epithelial cells by miR-29a[J]. Biomed Res Int, 2017, 2017: 2647879. |
29 | WANG M, YANG Z K, LIU H, et al. Genipin inhibits the scleral expression of miR-29 and MMP2 and promotes COL1A1 expression in myopic eyes of guinea pigs[J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(5): 1031-1038. |
30 | ZHU Y, LI W, ZHU D, et al. microRNA profiling in the aqueous humor of highly myopic eyes using next generation sequencing[J]. Exp Eye Res, 2020, 195: 108034. |
31 | ZHU Y, ZHANG Y, JIANG R, et al. MicroRNA-29a may influence myopia development by regulating collagen I[J]. Curr Eye Res, 2021: 1-9. |
32 | TANG S M, MA L, LU S Y, et al. Association of the PAX6 gene with extreme myopia rather than lower grade myopias[J]. Br J Ophthalmol, 2018, 102(4): 570-574. |
33 | TANG S M, RONG S S, YOUNG A L, et al. PAX6 gene associated with high myopia: a meta-analysis[J]. Optom Vis Sci, 2014, 91(4): 419-429. |
34 | ROY S, THAKUR A R. Two models of Smad4 and Hoxa9 complex are proposed: structural and interactional perspective[J]. J Biomol Struct Dyn, 2011, 28(5): 729-742. |
35 | CHEN K C, HSI E, HU C Y, et al. MicroRNA-328 may influence myopia development by mediating the PAX6 gene[J]. Invest Ophthalmol Vis Sci, 2012, 53(6): 2732-2739. |
36 | LIANG C L, HSI E, CHEN K C, et al. A functional polymorphism at 3′UTR of the PAX6 gene may confer risk for extreme myopia in the Chinese[J]. Invest Ophthalmol Vis Sci, 2011, 52(6): 3500-3505. |
37 | SEKO Y, SHIMIZU M, TOKORO T. Retinoic acid increases in the retina of the chick with form deprivation myopia[J]. Ophthalmic Res, 1998, 30(6): 361-367. |
38 | BRYNE J C, VALEN E, TANG M H, et al. JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update[J]. Nucleic Acids Res, 2008, 36(Database issue): D102-D106. |
39 | KUNCEVICIENE E, LIUTKEVICIENE R, BUDIENE B, et al. Independent association of whole blood miR-328 expression and polymorphism at 3′UTR of the PAX6 gene with myopia[J]. Gene, 2019, 687: 151-155. |
40 | LIANG C L, HSU P Y, NGO C S, et al. HOXA9 is a novel myopia risk gene[J]. BMC Ophthalmol, 2019, 19(1): 28. |
41 | KUNCEVICIENE E, BUDIENE B, SMALINSKIENE A, et al. Association of hsa-mir-328-3p expression in whole blood with optical density of retinal pigment epithelial cells[J]. In Vivo, 2021, 35(2): 827-831. |
42 | YEASMIN F, YADA T, AKIMITSU N. Micropeptides encoded in transcripts previously identified as long noncoding RNAs: a new chapter in transcriptomics and proteomics[J]. Front Genet, 2018, 9: 144. |
43 | PONTING C P, OLIVER P L, REIK W. Evolution and functions of long noncoding RNAs[J]. Cell, 2009, 136(4): 629-641. |
44 | GUIDUCCI G, STOJIC L. Long noncoding RNAs at the crossroads of cell cycle and genome integrity[J]. Trends Genet, 2021, 37(6): 528-546. |
45 | LI F, WEN X, ZHANG H, et al. Novel insights into the role of long noncoding RNA in ocular diseases[J]. Int J Mol Sci, 2016, 17(4): 478. |
46 | GENG C, LI Y, GUO F, et al. RNA sequencing analysis of long non-coding RNA expression in ocular posterior poles of guinea pig myopia models[J]. Mol Vis, 2020, 26: 117-134. |
47 | LIM D H, HAN J, CHUNG T Y, et al. The high prevalence of myopia in Korean children with influence of parental refractive errors: The 2008-2012 Korean National Health and Nutrition Examination Survey[J]. PLoS One, 2018, 13(11): e0207690. |
48 | CHEN L L. The expanding regulatory mechanisms and cellular functions of circular RNAs[J]. Nat Rev Mol Cell Biol, 2020, 21(8): 475-490. |
49 | VERDUCI L, TARCITANO E, STRANO S, et al. CircRNAs: role in human diseases and potential use as biomarkers[J]. Cell Death Dis, 2021, 12(5): 468. |
50 | HANSEN T B, JENSEN T I, CLAUSEN B H, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384-388. |
51 | ZHANG S, ZHANG G, ZHOU X, et al. Changes in choroidal thickness and choroidal blood perfusion in guinea pig myopia[J]. Invest Ophthalmol Vis Sci, 2019, 60(8): 3074-3083. |
52 | ZHAO F, ZHANG D, ZHOU Q, et al. Scleral HIF-1α is a prominent regulatory candidate for genetic and environmental interactions in human myopia pathogenesis[J]. EBioMedicine, 2020, 57: 102878. |
53 | LI D, LIU C, SUN Y N, et al. Targeting choroidal vascular dysfunction via inhibition of circRNA-FoxO1 for prevention and management of myopic pathology[J]. Mol Ther, 2021, 29(7): 2268-2280. |
/
〈 |
|
〉 |