综述

线粒体自噬异常在阿尔茨海默病中的作用及机制研究综述

  • 林祎嘉 ,
  • 程丽珍 ,
  • 苗雅
展开
  • 上海交通大学医学院附属第六人民医院老年病科,上海 200233
林祎嘉(1998—),女,硕士生;电子信箱:linyijia2020@126.com
苗 雅,电子信箱:nning-my@163.com

收稿日期: 2021-10-28

  网络出版日期: 2022-03-16

基金资助

上海市自然科学基金(19ZR1438800)

Research progress in the role and mechanism of abnormal mitophagy in Alzheimer's disease

  • Yijia LIN ,
  • Lizhen CHENG ,
  • Ya MIAO
Expand
  • Department of Geriatrics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
MIAO Ya, E-mail: nning-my@163.com.

Received date: 2021-10-28

  Online published: 2022-03-16

Supported by

Natural Science Foundation of Shanghai(19ZR1438800)

摘要

阿尔茨海默病(Alzheimer's disease,AD)是一种神经退行性疾病,也是老年痴呆的主要类型之一。近年来的研究发现,AD患者常发生线粒体自噬异常。相关研究显示,线粒体自噬是线粒体质量和数量控制的重要途径,即细胞可通过选择性自噬清除受损或功能失调的线粒体,以维持细胞的正常生理功能和能量供应。该文从AD状态下线粒体自噬发生的异常变化及该变化在AD发生发展中的作用及机制进行综述,以期提供通过靶向诱导线粒体自噬来控制并延缓AD进程的新思路。

本文引用格式

林祎嘉 , 程丽珍 , 苗雅 . 线粒体自噬异常在阿尔茨海默病中的作用及机制研究综述[J]. 上海交通大学学报(医学版), 2022 , 42(3) : 387 -392 . DOI: 10.3969/j.issn.1674-8115.2022.03.019

Abstract

Alzheimer's disease (AD) is a neurodegenerative disease and one of the main types of senile dementia. In recent years, abnormal mitophagy often occurs in AD patients. Relevant studies have shown that mitophagy is an important way to control the quality and quantity of mitochondria, that is, cells can remove damaged or dysfunctional mitochondria through selective autophagy to maintain the normal physiological function and energy supply. This article reviews the abnormal changes of mitophagy in AD and its role and mechanism in the occurrence and development of AD, in order to offer new ideas for controlling and delaying the process of AD by targeted induction of mitophagy.

参考文献

1 JIA L, DU Y, CHU L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study[J]. Lancet Public Health, 2020, 5(12): e661-e671.
2 CAI Q, JEONG Y Y. Mitophagy in Alzheimer's disease and other age-related neurodegenerative diseases[J]. Cells, 2020, 9(1): 150.
3 LEMASTERS J J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging[J]. Rejuvenation Res, 2005, 8(1): 3-5.
4 RüB C, WILKENING A, VOOS W. Mitochondrial quality control by the Pink1/Parkin system[J]. Cell Tissue Res, 2017, 367(1): 111-123.
5 RANDOW F, YOULE R J. Self and nonself: how autophagy targets mitochondria and bacteria[J]. Cell Host Microbe, 2014, 15(4): 403-411.
6 ROBERTS R F, TANG M Y, FON E A, et al. Defending the mitochondria: the pathways of mitophagy and mitochondrial-derived vesicles[J]. Int J Biochem Cell Biol, 2016, 79: 427-436.
7 NARENDRA D P, JIN S M, TANAKA A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin[J]. PLoS Biol, 2010, 8(1): e1000298.
8 LOU G, PALIKARAS K, LAUTRUP S, et al. Mitophagy and neuroprotection[J]. Trends Mol Med, 2020, 26(1): 8-20.
9 BRAAK H, BRAAK E. Neuropathological stageing of Alzheimer-related changes[J]. Acta Neuropathol, 1991, 82(4): 239-259.
10 YE X, SUN X, STAROVOYTOV V, et al. Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer's disease patient brains[J]. Hum Mol Genet, 2015, 24(10): 2938-2951.
11 MARTíN-MAESTRO P, GARGINI R, PERRY G, et al. PARK2 enhancement is able to compensate mitophagy alterations found in sporadic Alzheimer's disease[J]. Hum Mol Genet, 2016, 25(4): 792-806.
12 BORDI M, BERG M J, MOHAN P S, et al. Autophagy flux in CA1 neurons of Alzheimer hippocampus: increased induction overburdens failing lysosomes to propel neuritic dystrophy[J]. Autophagy, 2016, 12(12): 2467-2483.
13 KERR J S, ADRIAANSE B A, GREIG N H, et al. Mitophagy and Alzheimer's disease: cellular and molecular mechanisms[J]. Trends Neurosci, 2017, 40(3): 151-166.
14 MOREIRA P I, SIEDLAK S L, WANG X, et al. Increased autophagic degradation of mitochondria in Alzheimer disease[J]. Autophagy, 2007, 3(6): 614-615.
15 NIXON R A. The role of autophagy in neurodegenerative disease[J]. Nat Med, 2013, 19(8): 983-997.
16 IVANKOVIC D, CHAU K Y, SCHAPIRA A H, et al. Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy[J]. J Neurochem, 2016, 136(2): 388-402.
17 GOETZL E J, BOXER A, SCHWARTZ J B, et al. Altered lysosomal proteins in neural-derived plasma exosomes in preclinical Alzheimer disease[J]. Neurology, 2015, 85(1): 40-47.
18 YANG D S, STAVRIDES P, MOHAN P S, et al. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits[J]. Brain, 2011, 134(pt 1): 258-277.
19 NIXON R A, YANG D S. Autophagy failure in Alzheimer's disease: locating the primary defect[J]. Neurobiol Dis, 2011, 43(1): 38-45.
20 COFFEY E E, BECKEL J M, LATIES A M, et al. Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer's disease-linked presenilin 1 A246E mutation can be reversed with cAMP[J]. Neuroscience, 2014, 263: 111-124.
21 ROVIRA-LLOPIS S, BA?ULS C, DIAZ-MORALES N, et al. Mitochondrial dynamics in type 2 diabetes: pathophysiological implications[J]. Redox Biol, 2017, 11: 637-645.
22 BERMAN S B, PINEDA F J, HARDWICK J M. Mitochondrial fission and fusion dynamics: the long and short of it[J]. Cell Death Differ, 2008, 15(7): 1147-1152.
23 MANCZAK M, CALKINS M J, REDDY P H. Impaired mitochondrial dynamics and abnormal interaction of amyloid β with mitochondrial protein Drp1 in neurons from patients with Alzheimer's disease: implications for neuronal damage[J]. Hum Mol Genet, 2011, 20(13): 2495-2509.
24 KANDIMALLA R, MANCZAK M, FRY D, et al. Reduced dynamin-related protein 1 protects against phosphorylated Tau-induced mitochondrial dysfunction and synaptic damage in Alzheimer's disease[J]. Hum Mol Genet, 2016, 25(22): 4881-4897.
25 TAMMINENI P, JEONG Y Y, FENG T, et al. Impaired axonal retrograde trafficking of the retromer complex augments lysosomal deficits in Alzheimer's disease neurons[J]. Hum Mol Genet, 2017, 26(22): 4352-4366.
26 MAGISTRETTI P J, ALLAMAN I. A cellular perspective on brain energy metabolism and functional imaging[J]. Neuron, 2015, 86(4): 883-901.
27 MOSCONI L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease. FDG-PET studies in MCI and AD[J]. Eur J Nucl Med Mol Imaging, 2005, 32(4): 486-510.
28 REDDY P H, MCWEENEY S, PARK B S, et al. Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer's disease[J]. Hum Mol Genet, 2004, 13(12): 1225-1240.
29 SIMON H U, HAJ-YEHIA A, LEVI-SCHAFFER F. Role of reactive oxygen species (ROS) in apoptosis induction[J]. Apoptosis, 2000, 5(5): 415-418.
30 FANG E F, SCHEIBYE-KNUDSEN M, CHUA K F, et al. Nuclear DNA damage signalling to mitochondria in ageing[J]. Nat Rev Mol Cell Biol, 2016, 17(5): 308-321.
31 ZHAO S, ZHAO J, ZHANG T, et al. Increased apoptosis in the platelets of patients with Alzheimer's disease and amnestic mild cognitive impairment[J]. Clin Neurol Neurosurg, 2016, 143: 46-50.
32 KUKREJA L, KUJOTH G C, PROLLA T A, et al. Increased mtDNA mutations with aging promotes amyloid accumulation and brain atrophy in the APP/Ld transgenic mouse model of Alzheimer's disease[J]. Mol Neurodegener, 2014, 9: 16.
33 GWON A R, PARK J S, ARUMUGAM T V, et al. Oxidative lipid modification of nicastrin enhances amyloidogenic γ-secretase activity in Alzheimer's disease[J]. Aging Cell, 2012, 11(4): 559-568.
34 JO D G, ARUMUGAM T V, WOO H N, et al. Evidence that γ-secretase mediates oxidative stress-induced β-secretase expression in Alzheimer's disease[J]. Neurobiol Aging, 2010, 31(6): 917-925.
35 王明宇, 杨宇, 吴江. Aβ结合乙醇脱氢酶与阿尔茨海默病[J]. 中风与神经疾病杂志, 2011, 28(7): 663-665.
36 ZHANG F, WANG S, GAN L, et al. Protective effects and mechanisms of sirtuins in the nervous system[J]. Prog Neurobiol, 2011, 95(3): 373-395.
37 CHOI J, CHANDRASEKARAN K, DEMAREST T G, et al. Brain diabetic neurodegeneration segregates with low intrinsic aerobic capacity[J]. Ann Clin Transl Neurol, 2014, 1(8): 589-604.
38 ECKERT A, NISBET R, GRIMM A, et al. March separate, strike together: role of phosphorylated TAU in mitochondrial dysfunction in Alzheimer's disease[J]. Biochim Biophys Acta, 2014, 1842(8): 1258-1266.
39 FANG E F, HOU Y J, PALIKARAS K, et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer's disease[J]. Nat Neurosci, 2019, 22(3): 401-412.
40 FAN J, YANG X, LI J, et al. Spermidine coupled with exercise rescues skeletal muscle atrophy from D-gal-induced aging rats through enhanced autophagy and reduced apoptosis via AMPK-FOXO3a signal pathway[J]. Oncotarget, 2017, 8(11): 17475-17490.
41 WANG H, FU J, XU X, et al. Rapamycin activates mitophagy and alleviates cognitive and synaptic plasticity deficits in a mouse model of Alzheimer's disease[J]. J Gerontol A Biol Sci Med Sci, 2021, 76(10): 1707-1713.
42 LONSKAYA I, HEBRON M L, DESFORGES N M, et al. Nilotinib-induced autophagic changes increase endogenous parkin level and ubiquitination, leading to amyloid clearance[J]. J Mol Med (Berl), 2014, 92(4): 373-386.
文章导航

/