论著 · 基础研究

听觉脑干植入豚鼠模型构建的标准化步骤及评价

  • 周祥 ,
  • 潘金锡 ,
  • 张钦杰 ,
  • 李蕴 ,
  • 陈颖 ,
  • 谭皓月 ,
  • 彭飞 ,
  • 黄穗 ,
  • 谭治平 ,
  • 吴皓 ,
  • 贾欢
展开
  • 1.上海交通大学医学院附属第九人民医院耳鼻咽喉头颈外科,上海 200011
    2.上海交通大学医学院耳科学研究所,上海市耳鼻疾病转化医学重点实验室,上海 200125
    3.上海交通大学医学院附属第九人民医院听觉植入中心,上海 200125
    4.浙江诺尔康神经电子科技股份有限公司,杭州 311100
周 祥(1991—),女,住院医师,硕士;电子信箱:zhouxiang0618@sjtu.edu.cn
贾 欢,电子信箱:huan.jia.orl@shsmu.edu.cn

收稿日期: 2022-03-27

  录用日期: 2022-04-15

  网络出版日期: 2022-05-28

基金资助

国家自然科学基金青年科学基金(82000990);上海市黄浦区产业扶持基金(XK2019015);上海市人才发展基金(2019047);上海市耳鼻疾病转化医学重点实验室(14DZ2260300);上海交通大学医学院转化医学协同创新项目(TM202011)

Establishment and evaluation of standardized steps for building a guinea pig model of auditory brainstem implantation

  • Xiang ZHOU ,
  • Jinxi PAN ,
  • Qinjie ZHANG ,
  • Yun LI ,
  • Ying CHEN ,
  • Haoyue TAN ,
  • Fei PENG ,
  • Sui HUANG ,
  • Zhiping TAN ,
  • Hao WU ,
  • Huan JIA
Expand
  • 1.Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
    2.Ear Institute, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
    3.Hearing Implantation Center, Shanghai Ninth People's Hospital, Shanghai 200125, China
    4.Nurotron Biotechnology Co. , Ltd. , Hangzhou 311100, China
JIA Huan, E-mail: huan.jia.orl@shsmu.edu.cn.

Received date: 2022-03-27

  Accepted date: 2022-04-15

  Online published: 2022-05-28

Supported by

National Natural Science Foundation of China(82000990);Shanghai Huangpu District Industrial Support Fund(XK2019015);Shanghai Talent Development Fund(2019047);Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300);Collaborative Innovation Project for Translational Medicine at Shanghai Jiao Tong University School of Medicine(TM202011)

摘要

目的·经听泡-迷路径路改良建立人工听觉脑干植入(auditory brainstem implantation,ABI)豚鼠模型并评价该模型的有效性和可靠性。方法·对20例听力正常的雄性健康成年白化豚鼠行改良后经听泡-迷路径路ABI手术,术中暴露脑干处耳蜗背侧核(dorsal cochlear nucleus,DCN)后植入豚鼠专用ABI电极阵列,记录电诱发听性脑干反应(evoke auditory brainstem response,eABR),并与术中耳蜗内eABR记录波形进行比较。留置ABI电极后,于术后48 h、7 d、30 d、180 d行安乐死前记录DCN处eABR波形;取出含电极脑组织,行苏木精-伊红染色、免疫荧光染色观察神经元、胶质、小胶质细胞的变化;定量PCR检测白介素-1β(interleukin-1β,IL-1β)和 基质金属蛋白酶9(matrix metalloprotein-9,MMP-9)的表达。结果·术中所有动物均成功引出DCN处eABR,术后死亡时间集中在电极植入后36~48 h。DCN处eABR波形形态与耳蜗处eABR相似,DCN处eABR中Ⅲ波相比耳蜗处eABR中Ⅳ潜伏期缩短(0.84±0.22)ms(n=19),DCN处较耳蜗处平均阈值减小(0.11±0.14)mA(n=19)。术后DCN处eABR与术中比较,阈值平均增加(0.10±0.10)mA(n=16),Ⅲ波潜伏期平均延迟(0.15±0.21)ms(n=16)。组织学形态分析显示电极周围的耳蜗核接触面在术后48 h出现空泡样变性,术后48 h、7 d及180 d在DCN边缘均可见胶质成分增多。定量PCR结果显示IL-1β、MMP-9基因表达量在48 h与7 d时高于未植入电极豚鼠,但差异无统计学意义。结论·建立的ABI植入豚鼠模型经实验评估,建模成功率高且重复性好;初步观察到电极神经界面出现周围胶质及纤维成分增生。

本文引用格式

周祥 , 潘金锡 , 张钦杰 , 李蕴 , 陈颖 , 谭皓月 , 彭飞 , 黄穗 , 谭治平 , 吴皓 , 贾欢 . 听觉脑干植入豚鼠模型构建的标准化步骤及评价[J]. 上海交通大学学报(医学版), 2022 , 42(5) : 583 -590 . DOI: 10.3969/j.issn.1674-8115.2022.05.005

Abstract

Objective

·To establish the guinea pig model of auditory brainstem implant (ABI) by modified transbulla-labyrinthine approach and assess its effectiveness and reliability.

Methods

·Twenty healthy adult male albino guinea pigs with normal hearing underwent ABI surgery via modified transbulla-labyrinthine approach. During the operation, the dorsal cochlear nucleus (DCN) of the brainstem was exposed laterally and implanted with a special ABI electrode array for guinea pigs. The evoked auditory brainstem response (eABR) was recorded from DCN and compared with the eABR waveform elicited from cochlear intraoperativly. After the electrode was implanted, the eABR waveform at DCN was recorded before euthanasia at 48 h, 7 d, 30 d and 180 d after operation. Then the brain tissue containing the electrode was harvested and the electrode neural-interface was evaluated by hematoxylin-eosin staining, immunofluorescence staining and q-PCR.

Results

·The eABR was successfully recorded at DCN from all animals during surgery, and the death occurred at 36 h to 48 h after operation. The waveform morphology of eABR at DCN was similar to that at cochlea. The latency of wave Ⅲ in eABR at DCN [ (0.84 ± 0.22)ms] was shorter than that of wave Ⅳ in EABR at cochlea (n=19), and the threshold difference between them was (0.11±0.14) mA (n=19). Compared with the intraoperative eABR at DCN, the average threshold increased by (0.10±0.10) mA (n=16), and the average delay of wave Ⅲ latency was (0.15±0.21) ms (n=16). Histological morphology analysis showed that the contact surface of cochlear nucleus around the electrode showed vacuolar changes at 48 h post-operation, and increased glial components were observed at the edge of DCN at 48 h, 7 d and 180 d post-operation. Results of q-PCR showed IL-1β and MMP9 were upregulated at 48 h and 7 d post-operation compared with the unimplanted electrode group, but there was no significant difference.

Conclusion

·The modeling success rate of established ABI-implanted guinea pig model is high and have outstanding repeativeness, and the local gliosis is preliminarily observed after implantation.

参考文献

1 WROBEL C, ZAFEIRIOU M P, MOSER T. Understanding and treating paediatric hearing impairment[J]. EBioMedicine, 2021, 63: 103171.
2 WONG K, KOZIN E D, KANUMURI V V, et al. Auditory brainstem implants: recent progress and future perspectives[J]. Front Neurosci, 2019, 13: 10.
3 EVANS D G R. Neurofibromatosis type 2 (NF2): a clinical and molecular review[J]. Orphanet J Rare Dis, 2009, 4: 16.
4 PURAM S V, BARBER S R, KOZIN E D, et al. Outcomes following pediatric auditory brainstem implant surgery: early experiences in a North American center[J]. Otolaryngol Head Neck Surg, 2016, 155(1): 133-138.
5 NOIJ K S, KOZIN E D, SETHI R, et al. Systematic review of nontumor pediatric auditory brainstem implant outcomes[J]. Otolaryngol Head Neck Surg, 2015, 153(5): 739-750.
6 GUEX A A, HIGHT A E, NARASIMHAN S, et al. Auditory brainstem stimulation with a conformable microfabricated array elicits responses with tonotopically organized components[J]. Hear Res, 2019, 377: 339-352.
7 VACHICOURAS N, TARABICHI O, KANUMURI V V, et al. Microstructured thin-film electrode technology enables proof of concept of scalable, soft auditory brainstem implants[J]. Sci Transl Med, 2019, 11(514): eaax9487.
8 FERGUSON M, SHARMA D, ROSS D, et al. A critical review of microelectrode arrays and strategies for improving neural interfaces[J]. Adv Healthc Mater, 2019, 8(19): e1900558.
9 HITSELBERGER W E, HOUSE W F, EDGERTON B J, et al. Cochlear nucleus implants[J]. Otolaryngol Head Neck Surg, 1984, 92(1): 52-54.
10 RAUSCHECKER J P, SHANNON R V. Sending sound to the brain[J]. Science, 2002, 295(5557): 1025-1029.
11 MCCREERY D, HAN M, PIKOV V. Neuronal activity evoked in the inferior colliculus of the cat by surface macroelectrodes and penetrating microelectrodes implanted in the cochlear nucleus[J]. IEEE Trans Biomed Eng, 2010, 57(7): 1765-1773.
12 OTTO S R, SHANNON R V, WILKINSON E P, et al. Audiologic outcomes with the penetrating electrode auditory brainstem implant[J]. Otol Neurotol, 2008, 29(8): 1147-1154.
13 KOZIN E D, DARROW K N, HIGHT A E, et al. Direct visualization of the murine dorsal cochlear nucleus for optogenetic stimulation of the auditory pathway[J]. J Vis Exp, 2015(95): 52426.
14 CERVERA-PAZ F J, SALDA?A E, MANRIQUE M. A model for auditory brain stem implants: bilateral surgical deafferentation of the cochlear nuclei in the macaque monkey[J]. Ear Hear, 2007, 28(3): 424-433.
15 BAIZER J S, MANOHAR S, PAOLONE N A, et al. Understanding tinnitus: the dorsal cochlear nucleus, organization and plasticity[J]. Brain Res, 2012, 1485: 40-53.
16 LIU X, MCPHEE G, SELDON H L, et al. Acute study on the neuronal excitability of the cochlear nuclei of the Guinea pig following electrical stimulation[J]. Acta Otolaryngol, 1997, 117(3): 363-375.
17 EL-KASHLAN H K, NIPARKO J K, ALTSCHULER R A, et al. Direct electrical stimulation of the cochlear nucleus: surface vs. penetrating stimulation[J]. Otolaryngol Head Neck Surg, 1991, 105(4): 533-543.
18 HACKNEY C M, OSEN K K, KOLSTON J. Anatomy of the cochlear nuclear complex of Guinea pig[J]. Anat Embryol (Berl), 1990, 182(2): 123-149.
19 DUDáS B, MIHALY A, HANIN I. A ventral approach to stereotaxy of the Guinea pig brain[J]. J Neurosci Methods, 2000, 99(1/2): 79-83.
20 ODA K, KAWASE T, YAMAUCHI D, et al. Electrophysiological mapping of the cochlear nucleus with multi-channel bipolar surface microelectrodes[J]. Eur Arch Otorhinolaryngol, 2013, 270(3): 869-874.
21 HUANG C Q, SHEPHERD R K. Reduction in excitability of the auditory nerve following electrical stimulation at high stimulus rates: v. Effects of electrode surface area[J]. Hear Res, 2000, 146(1/2): 57-71.
22 ODA K, KAWASE T, YAMAUCHI D, et al. Electrophysiological mapping of the cochlear nucleus with multi-channel bipolar surface microelectrodes[J]. Eur Arch Otorhinolaryngol, 2013, 270(3): 869-874.
23 GOLABCHI A, WOEPPEL K M, LI X, et al. Neuroadhesive protein coating improves the chronic performance of neuroelectronics in mouse brain[J]. Biosens Bioelectron, 2020, 155: 112096.
24 GOLABCHI A, WU B C, LI X, et al. Melatonin improves quality and longevity of chronic neural recording[J]. Biomaterials, 2018, 180: 225-239.
25 JORFI M, SKOUSEN J L, WEDER C, et al. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications[J]. J Neural Eng, 2015, 12(1): 011001.
26 KOZAI T D, JAQUINS-GERSTL A S, VAZQUEZ A L, et al. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies[J]. ACS Chem Neurosci, 2015, 6(1): 48-67.
27 WELLMAN S M, ELES J R, LUDWIG K A, et al. A materials roadmap to functional neural interface design[J]. Adv Funct Mater, 2018, 28(12): 1701269.
28 MCGINN M D, FADDIS B T. Exposure to low frequency noise during rearing induces spongiform lesions in gerbil cochlear nucleus: high frequency exposure does not[J]. Hear Res, 1994, 81(1/2): 57-65.
29 REMPE R G, HARTZ A M S, SOLDNER E L B, et al. Matrix metalloproteinase-mediated blood-brain barrier dysfunction in epilepsy[J]. J Neurosci, 2018, 38(18): 4301-4315.
30 GUEX A A, VACHICOURAS N, HIGHT A E, et al. Conducting polymer electrodes for auditory brainstem implants[J]. J Mater Chem B, 2015, 3(25): 5021-5027.
文章导航

/