1 |
WROBEL C, ZAFEIRIOU M P, MOSER T. Understanding and treating paediatric hearing impairment[J]. EBioMedicine, 2021, 63: 103171.
|
2 |
WONG K, KOZIN E D, KANUMURI V V, et al. Auditory brainstem implants: recent progress and future perspectives[J]. Front Neurosci, 2019, 13: 10.
|
3 |
EVANS D G R. Neurofibromatosis type 2 (NF2): a clinical and molecular review[J]. Orphanet J Rare Dis, 2009, 4: 16.
|
4 |
PURAM S V, BARBER S R, KOZIN E D, et al. Outcomes following pediatric auditory brainstem implant surgery: early experiences in a North American center[J]. Otolaryngol Head Neck Surg, 2016, 155(1): 133-138.
|
5 |
NOIJ K S, KOZIN E D, SETHI R, et al. Systematic review of nontumor pediatric auditory brainstem implant outcomes[J]. Otolaryngol Head Neck Surg, 2015, 153(5): 739-750.
|
6 |
GUEX A A, HIGHT A E, NARASIMHAN S, et al. Auditory brainstem stimulation with a conformable microfabricated array elicits responses with tonotopically organized components[J]. Hear Res, 2019, 377: 339-352.
|
7 |
VACHICOURAS N, TARABICHI O, KANUMURI V V, et al. Microstructured thin-film electrode technology enables proof of concept of scalable, soft auditory brainstem implants[J]. Sci Transl Med, 2019, 11(514): eaax9487.
|
8 |
FERGUSON M, SHARMA D, ROSS D, et al. A critical review of microelectrode arrays and strategies for improving neural interfaces[J]. Adv Healthc Mater, 2019, 8(19): e1900558.
|
9 |
HITSELBERGER W E, HOUSE W F, EDGERTON B J, et al. Cochlear nucleus implants[J]. Otolaryngol Head Neck Surg, 1984, 92(1): 52-54.
|
10 |
RAUSCHECKER J P, SHANNON R V. Sending sound to the brain[J]. Science, 2002, 295(5557): 1025-1029.
|
11 |
MCCREERY D, HAN M, PIKOV V. Neuronal activity evoked in the inferior colliculus of the cat by surface macroelectrodes and penetrating microelectrodes implanted in the cochlear nucleus[J]. IEEE Trans Biomed Eng, 2010, 57(7): 1765-1773.
|
12 |
OTTO S R, SHANNON R V, WILKINSON E P, et al. Audiologic outcomes with the penetrating electrode auditory brainstem implant[J]. Otol Neurotol, 2008, 29(8): 1147-1154.
|
13 |
KOZIN E D, DARROW K N, HIGHT A E, et al. Direct visualization of the murine dorsal cochlear nucleus for optogenetic stimulation of the auditory pathway[J]. J Vis Exp, 2015(95): 52426.
|
14 |
CERVERA-PAZ F J, SALDAÑA E, MANRIQUE M. A model for auditory brain stem implants: bilateral surgical deafferentation of the cochlear nuclei in the macaque monkey[J]. Ear Hear, 2007, 28(3): 424-433.
|
15 |
BAIZER J S, MANOHAR S, PAOLONE N A, et al. Understanding tinnitus: the dorsal cochlear nucleus, organization and plasticity[J]. Brain Res, 2012, 1485: 40-53.
|
16 |
LIU X, MCPHEE G, SELDON H L, et al. Acute study on the neuronal excitability of the cochlear nuclei of the Guinea pig following electrical stimulation[J]. Acta Otolaryngol, 1997, 117(3): 363-375.
|
17 |
EL-KASHLAN H K, NIPARKO J K, ALTSCHULER R A, et al. Direct electrical stimulation of the cochlear nucleus: surface vs. penetrating stimulation[J]. Otolaryngol Head Neck Surg, 1991, 105(4): 533-543.
|
18 |
HACKNEY C M, OSEN K K, KOLSTON J. Anatomy of the cochlear nuclear complex of Guinea pig[J]. Anat Embryol (Berl), 1990, 182(2): 123-149.
|
19 |
DUDÁS B, MIHALY A, HANIN I. A ventral approach to stereotaxy of the Guinea pig brain[J]. J Neurosci Methods, 2000, 99(1/2): 79-83.
|
20 |
ODA K, KAWASE T, YAMAUCHI D, et al. Electrophysiological mapping of the cochlear nucleus with multi-channel bipolar surface microelectrodes[J]. Eur Arch Otorhinolaryngol, 2013, 270(3): 869-874.
|
21 |
HUANG C Q, SHEPHERD R K. Reduction in excitability of the auditory nerve following electrical stimulation at high stimulus rates: v. Effects of electrode surface area[J]. Hear Res, 2000, 146(1/2): 57-71.
|
22 |
ODA K, KAWASE T, YAMAUCHI D, et al. Electrophysiological mapping of the cochlear nucleus with multi-channel bipolar surface microelectrodes[J]. Eur Arch Otorhinolaryngol, 2013, 270(3): 869-874.
|
23 |
GOLABCHI A, WOEPPEL K M, LI X, et al. Neuroadhesive protein coating improves the chronic performance of neuroelectronics in mouse brain[J]. Biosens Bioelectron, 2020, 155: 112096.
|
24 |
GOLABCHI A, WU B C, LI X, et al. Melatonin improves quality and longevity of chronic neural recording[J]. Biomaterials, 2018, 180: 225-239.
|
25 |
JORFI M, SKOUSEN J L, WEDER C, et al. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications[J]. J Neural Eng, 2015, 12(1): 011001.
|
26 |
KOZAI T D, JAQUINS-GERSTL A S, VAZQUEZ A L, et al. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies[J]. ACS Chem Neurosci, 2015, 6(1): 48-67.
|
27 |
WELLMAN S M, ELES J R, LUDWIG K A, et al. A materials roadmap to functional neural interface design[J]. Adv Funct Mater, 2018, 28(12): 1701269.
|
28 |
MCGINN M D, FADDIS B T. Exposure to low frequency noise during rearing induces spongiform lesions in gerbil cochlear nucleus: high frequency exposure does not[J]. Hear Res, 1994, 81(1/2): 57-65.
|
29 |
REMPE R G, HARTZ A M S, SOLDNER E L B, et al. Matrix metalloproteinase-mediated blood-brain barrier dysfunction in epilepsy[J]. J Neurosci, 2018, 38(18): 4301-4315.
|
30 |
GUEX A A, VACHICOURAS N, HIGHT A E, et al. Conducting polymer electrodes for auditory brainstem implants[J]. J Mater Chem B, 2015, 3(25): 5021-5027.
|