综述

基于纳米颗粒靶向细菌的策略及机制的研究进展

  • 骆智渊 ,
  • 石亭旺 ,
  • 阮泽松 ,
  • 陈云丰
展开
  • 上海交通大学医学院附属第六人民医院骨科,上海 200233
骆智渊(1998—),男,硕士生;电子信箱:echo007@sjtu.edu.cn
陈云丰,电子信箱:chenyf@sjtu.edu.cn

收稿日期: 2022-03-01

  录用日期: 2022-06-22

  网络出版日期: 2022-08-19

基金资助

国家自然科学基金(81974340)

Reaearch progress of strategies and mechanisms of targeting bacteria based on nanoparticles

  • Zhiyuan LUO ,
  • Tingwang SHI ,
  • Zesong RUAN ,
  • Yunfeng CHEN
Expand
  • Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
CHEN Yunfeng, E-mail: drchenyunfeng@sina.com.

Received date: 2022-03-01

  Accepted date: 2022-06-22

  Online published: 2022-08-19

Supported by

National Natural Science Foundation of China(81974340)

摘要

抗生素耐药危机是全球公共卫生中最紧迫的问题之一。为了解决细菌对抗生素的耐药危机,近年来越来越多的生物纳米材料被应用于抗菌领域。纳米颗粒(nanoparticles,NPs)是一类大小在纳米尺度的材料,与传统抗菌药物相比具有独特的优势,但NPs应用于人体依然面临靶向性不高以及对其他组织脏器的损害问题。靶向治疗除了能提高疗效外,还允许使用较低浓度的高毒性药物,从而减少药物毒性和健康组织的不良反应,因此如何提高NPs对细菌的靶向性,是当今医疗卫生领域面临的重要问题。该文首先对NPs做一概述,然后从表面功能化、环境响应和细胞膜仿生修饰3种常用的细菌靶向策略出发,介绍其基本机制及最新研究成果,并总结每种策略的优劣势以及未来主要的发展方向,以期提供该领域发展情况的大略图景,为抗菌药物的靶向治疗策略提供新的思路。

本文引用格式

骆智渊 , 石亭旺 , 阮泽松 , 陈云丰 . 基于纳米颗粒靶向细菌的策略及机制的研究进展[J]. 上海交通大学学报(医学版), 2022 , 42(6) : 819 -824 . DOI: 10.3969/j.issn.1674-8115.2022.06.018

Abstract

The crisis of antibiotic resistance is one of the most pressing problems in global public health. To solve the crisis of antibiotic resistance, more and more biological nanomaterials are applied to antimicrobial in recent years. Nanoparticles (NPs) are a class of nanoscale materials with unique advantages compared with traditional antibacterial drugs. However, the application of nanoparticles still faces the dilemma of poor targeting ability and the possible damage to normal tissue. In addition to improving efficacy, targeted therapies allow us to use lower concentrations of highly toxic drugs, thereby reducing the toxic side effects on healthy tissue. Therefore, how to improve the targeting of NPs to bacteria is an important issue today. This article will give an overall introduction to nanoparticles first. Surface modification, stimuli-responsiveness and biomimetic modification of cell membrane, three common bacterial targeting strategies will be introduced later, including their basic mechanisms and the latest findings. The advantages and disadvantages of the three strategies and their future direction will also be summarized. A general picture of the developments in this field will be provided to readers, and it is hoped that new ideas for targeting bacteria will emerge in the future.

参考文献

1 NAYLOR N R, ATUN R, ZHU N N, et al. Estimating the burden of antimicrobial resistance: a systematic literature review[J]. Antimicrob Resist Infect Control, 2018, 7: 58.
2 BAPTISTA P V, MCCUSKER M P, CARVALHO A, et al. Nano-strategies to fight multidrug resistant bacteria-“A battle of the titans”[J]. Front Microbiol, 2018, 9: 1441.
3 MILLER K P, WANG L, BENICEWICI B C, et al. Inorganic nanoparticles engineered to attack bacteria[J]. Chem Soc Rev, 2015. 44(21): 7787-7807.
4 PAUL E. Chemotherapeutische trypanosomen-studien[J]. Berliner Klinische Wochenschrift, 1907, 44: 233-236.
5 GUIDO C, MAIORANO G, CORTESE B, et al. Biomimetic nanocarriers for cancer target therapy[J]. Bioengineering (Basel), 2020, 7(3): 111.
6 LI J L, CHEN C Y, XIA T. Understanding nanomaterial-liver interactions to facilitate the development of safer nanoapplications[J]. Adv Mater, 2022, 34(11): e2106456.
7 WANG W, LI P F, XIE R, et al. Designable micro-/ nano-structured smart polymeric materials[J]. Adv Mater, 2021: e2107877. DOI: 10.1002/adma.202107877.
8 NATAN M, BANIN E. From nano to micro: using nanotechnology to combat microorganisms and their multidrug resistance[J]. FEMS Microbiol Rev, 2017, 41(3): 302-322.
9 YIN I X, ZHANG J, ZHAO I S, et al. The antibacterial mechanism of silver nanoparticles and its application in dentistry[J]. Int J Nanomedicine, 2020, 15: 2555-2562.
10 DONG X L, LIANG W X, MEZIANI M J, et al. Carbon dots as potent antimicrobial agents[J]. Theranostics, 2020, 10(2): 671-686.
11 AUGUSTINE R, KALVA N, KIM H N, et al. PH-responsive polypeptide-based smart nano-carriers for theranostic applications[J]. Molecules, 2019, 24: 2961.
12 LANDIS R F, GUPTA A, LEE Y W, et al. Cross-linked polymer-stabilized nanocomposites for the treatment of bacterial biofilms[J]. ACS Nano, 2017, 11(1): 946-952.
13 MAKABENTA J M V, NABAWY A, LI C H, et al. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections[J]. Nat Rev Microbiol, 2021, 19(1): 23-36.
14 ZHANG J L, XIANG Q Q, SHEN L, et al. Surface charge-dependent bioaccumulation dynamics of silver nanoparticles in freshwater algae[J]. Chemosphere, 2020, 247: 125936.
15 LAM S J, O'BRIEN-SIMPSON N M, PANTARAT N, et al. Combating multidrug-resistant gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers[J]. Nat Microbiol, 2016, 1(11): 16162.
16 HUO S D, JIANG Y, GUPTA A, et al. Fully zwitterionic nanoparticle antimicrobial agents through tuning of core size and ligand structure[J]. ACS Nano, 2016, 10(9): 8732-8737.
17 ELBOURNE A, CHEESEMAN S, ATKIN P, et al. Antibacterial liquid metals: biofilm treatment via magnetic activation[J]. ACS Nano, 2020, 14(1): 802-817.
18 JIN K, LUO Z M, ZHANG B, et al. Biomimetic nanoparticles for inflammation targeting[J]. Acta Pharm Sin B, 2018, 8(1): 23-33.
19 WANG H J, SONG Z Y, LI S J, et al. One stone with two birds: functional gold nanostar for targeted combination therapy of drug-resistant Staphylococcus aureus infection[J]. ACS Appl Mater Interfaces, 2019, 11(36): 32659-32669.
20 KANG S, PARK T, CHEN X Y, et al. Tunable physiologic interactions of adhesion molecules for inflamed cell-selective drug delivery[J]. Biomaterials, 2011, 32(13): 3487-3498.
21 LEHAR S M, PILLOW T, XU M, et al. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus[J]. Nature, 2015, 527(7578): 323-328.
22 GALANZHA E I, SHASHKOV E, SARIMOLLAOGLU M, et al. In vivo magnetic enrichment, photoacoustic diagnosis, and photothermal purging of infected blood using multifunctional gold and magnetic nanoparticles[J]. PLoS One, 2012, 7(9): e45557.
23 CHEN L F, XING S H, LEI Y L, et al. A glucose-powered activatable nanozyme breaking pH and H2O2 limitations for treating diabetic infections[J]. Angew Chem Int Ed Engl, 2021, 60(44): 23534-23539.
24 YATVIN M B, WEINSTEIN J N, DENNIS W H, et al. Design of liposomes for enhanced local release of drugs by hyperthermia[J]. Science, 1978, 202(4374): 1290-1293.
25 AMOLI-DIVA M, SADIGHI-BONABI R, POURGHAZI K. Laser-assisted triggered-drug release from silver nanoparticles-grafted dual-responsive polymer[J]. Mater Sci Eng C Mater Biol Appl, 2017, 76: 536-542.
26 MEEKER D G, JENKINS S V, MILLER E K, et al. Synergistic photothermal and antibiotic killing of biofilm-associated Staphylococcus aureus using targeted antibiotic-loaded gold nanoconstructs[J]. ACS Infect Dis, 2016, 2(4): 241-250.
27 BORZENKOV M, MOROS M, TORTIGLIONE C, et al. Fabrication of photothermally active poly(vinyl alcohol) films with gold nanostars for antibacterial applications[J]. Beilstein J Nanotechnol, 2018, 9: 2040-2048.
28 MOHAPATRA A, HARRIS M A, LEVINE D, et al. Magnetic stimulus responsive vancomycin drug delivery system based on chitosan microbeads embedded with magnetic nanoparticles[J]. J Biomed Mater Res B Appl Biomater, 2018, 106(6): 2169-2176.
29 GEILICH B M, GELFAT I, SRIDHAR S, et al. Superparamagnetic iron oxide-encapsulating polymersome nanocarriers for biofilm eradication[J]. Biomaterials, 2017, 119: 78-85.
30 HARRIS M, AHMED H, BARR B, et al. Magnetic stimuli-responsive chitosan-based drug delivery biocomposite for multiple triggered release[J]. Int J Biol Macromol, 2017, 104(Pt B): 1407-1414.
31 DAS S S, BHARADWAJ P, BILAL M, et al. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis[J]. Polymers, 2020, 12(6): 1397.
32 WU J H, LI F Y, HU X, et al. Responsive assembly of silver nanoclusters with a biofilm locally amplified bactericidal effect to enhance treatments against multi-drug-resistant bacterial infections[J]. ACS Cent Sci, 2019, 5(8): 1366-1376.
33 KALHAPURE R S, JADHAV M, RAMBHAROSE S, et al. pH-responsive chitosan nanoparticles from a novel twin-chain anionic amphiphile for controlled and targeted delivery of vancomycin[J]. Colloids Surf B Biointerfaces, 2017, 158: 650-657.
34 WU Y, SONG Z Y, WANG H J, et al. Endogenous stimulus-powered antibiotic release from nanoreactors for a combination therapy of bacterial infections[J]. Nat Commun, 2019, 10(1): 4464.
35 DONG X Y, ZHANG C Y, JIN G, et al. Targeting of nanotherapeutics to infection sites for antimicrobial therapy[J]. Adv Ther (Weinh), 2019, 2(11): 1900095.
36 MA B X, XU H, ZHUANG W H, et al. Reactive oxygen species responsive theranostic nanoplatform for two-photon aggregation-induced emission imaging and therapy of acute and chronic inflammation[J]. ACS Nano, 2020, 14(5): 5862-5873.
37 WANG Z, LIU X Y, DUAN Y W, et al. Infection microenvironment-related antibacterial nanotherapeutic strategies[J]. Biomaterials, 2022, 280: 121249.
38 LI L L, XU J H, QI G B, et al. Core-shell supramolecular gelatin nanoparticles for adaptive and "on-demand" antibiotic delivery[J]. ACS Nano, 2014, 8(5): 4975-4983.
39 CHEN M H, XIE S Z, WEI J J, et al. Antibacterial micelles with vancomycin-mediated targeting and pH/lipase-triggered release of antibiotics[J]. ACS Appl Mater Interfaces, 2018, 10(43): 36814-36823.
40 CANAPARO R, FOGLIETTA F, GIUNTINI F, et al. Recent developments in antibacterial therapy: focus on stimuli-responsive drug-delivery systems and therapeutic nanoparticles[J]. Molecules, 2019, 24(10): 1991.
41 HU C M J, ZHANG L, ARYAL S, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform[J]. Proc Natl Acad Sci USA, 2011, 108(27): 10980-10985.
42 WANG K Y, LEI Y T, XIA D L, et al. Neutrophil membranes coated, antibiotic agent loaded nanoparticles targeting to the lung inflammation[J]. Colloids Surf B Biointerfaces, 2020, 188: 110755.
43 WANG C, WANG Y L, ZHANG L L, et al. Pretreated macrophage-membrane-coated gold nanocages for precise drug delivery for treatment of bacterial infections[J]. Adv Mater, 2018, 30(46): e1804023.
44 WEI X L, RAN D N, CAMPEAU A, et al. Multiantigenic nanotoxoids for antivirulence vaccination against antibiotic-resistant gram-negative bacteria[J]. Nano Lett, 2019, 19(7): 4760-4769.
45 HU Q Y, SUN W J, QIAN C G, et al. Relay drug delivery for amplifying targeting signal and enhancing anticancer efficacy[J]. Adv Mater, 2017, 29(13): 1605803.
46 GAO F, XU L L, YANG B Q, et al. Kill the real with the fake: eliminate intracellular Staphylococcus aureus using nanoparticle coated with its extracellular vesicle membrane as active-targeting drug carrier[J]. ACS Infect Dis, 2019, 5(2): 218-227.
47 DEHAINI D, WEI X L, FANG R H, et al. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization[J]. Adv Mater, 2017, 29(16): 1606209.
48 LI J, ANGSANTIKUL P, LIU W, et al. Biomimetic platelet-camouflaged nanorobots for binding and isolation of biological threats[J]. Adv Mater, 2018, 30(2). DOI:10.1002/adma.201704800.
49 MOLINARO R, CORBO C, MARTINEZ J O, et al. Biomimetic proteolipid vesicles for targeting inflamed tissues[J]. Nat Mater, 2016, 15(9): 1037-1046.
50 BOROVI?KA J, METHERINGHAM W J, MADDEN L A, et al. Photothermal colloid antibodies for shape-selective recognition and killing of microorganisms[J]. J Am Chem Soc, 2013, 135(14): 5282-5285.
51 DALLE VEDOVE E, COSTABILE G, MERKEL O M. Mannose and mannose-6-phosphate receptor-targeted drug delivery systems and their application in cancer therapy[J]. Adv Healthc Mater, 2018, 7(14): e1701398.
52 PI J, SHEN L, YANG E Z, et al. Macrophage-targeted isoniazid-selenium nanoparticles promote antimicrobial immunity and synergize bactericidal destruction of tuberculosis bacilli[J]. Angew Chem Int Ed Engl, 2020, 59(8): 3226-3234.
53 PI J, SHEN L, SHEN H B, et al. Mannosylated graphene oxide as macrophage-targeted delivery system for enhanced intracellular M.tuberculosis killing efficiency[J]. Mater Sci Eng C Mater Biol Appl, 2019, 103: 109777.
文章导航

/