论著 · 临床研究

纤维桩修复上颌第一磨牙牙体缺损的三维有限元力学分析

  • 仲麒 ,
  • 黄雨捷 ,
  • 张轶凡 ,
  • 宋迎爽 ,
  • 吴雅琴 ,
  • 瞿方 ,
  • 黄庆丰 ,
  • 胥春
展开
  • 上海交通大学医学院附属第九人民医院口腔修复科,上海交通大学口腔医学院,国家口腔医学中心,国家口腔疾病临床医学研究中心,上海市口腔医学重点实验室,上海 200011
仲 麒(1996—),男,住院医师,学士;电子信箱:123281927@qq.com
黄庆丰,电子信箱:hqfyy@163.com
胥 春,电子信箱:imxuchun@163.com

收稿日期: 2022-03-17

  录用日期: 2022-06-17

  网络出版日期: 2022-08-12

基金资助

国家自然科学基金面上项目(82071157);上海市卫生健康委员会卫生行业临床研究专项资助项目(201940009)

Three-dimensional finite element analysis on fiber-reinforced composite post-restored maxillary first molar with tooth defect

  • Qi ZHONG ,
  • Yujie HUANG ,
  • Yifan ZHANG ,
  • Yingshuang SONG ,
  • Yaqin WU ,
  • Fang QU ,
  • Qingfeng HUANG ,
  • Chun XU
Expand
  • Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
HUANG Qingfeng, E-mail: hqfyy@163.com.
XU Chun, E-mail: imxuchun@163.com

Received date: 2022-03-17

  Accepted date: 2022-06-17

  Online published: 2022-08-12

Supported by

National Natural Science Foundation of China(82071157);Special Support Project for Clinical Research in Health Industry of Shanghai Municipal Health Commission(201940009)

摘要

目的·探究纤维桩修复上颌第一磨牙腭面(palatal-occlusal,PO)和远中邻面(distal-occlusal,DO)牙体缺损时适宜的修复策略。方法·建立上颌第一磨牙PO和DO 2种牙体缺损模型,每种缺损类型采用不放纤维桩(no post,NP)、腭根单纤维桩(palatal post,PP)、腭根及远颊根双纤维桩(palatal and distobuccal posts,PDP)、腭根及近颊根双纤维桩(palatal and mesiobuccal posts,PMP)以及三根管纤维桩(palatal, distobuccal and mesiobuccal posts,PDMP)5种不同策略进行全冠修复的有限元模型。若多桩组的纤维桩在树脂核内出现干扰,则将较细的桩于重叠处下方1 mm处水平截断。对各模型分别加载与牙体长轴平行的800 N垂直力和与牙体长轴呈45°角的225 N侧向力。通过有限元分析计算牙体组织和纤维桩内的等效应力及纤维桩-树脂水门汀、树脂水门汀-根管壁界面上的最大切应力。结果·对于牙体外表面的最大等效应力值,垂直载荷下PO缺损的PMP组和DO缺损的PDP组最小(分别为36.17 MPa、36.23 MPa),侧向载荷下PO缺损的PDMP组和DO缺损的PMP组最小(分别为40.47 MPa、42.05 MPa)。在2类牙体缺损中,置入纤维桩后根管内表面颈1/3的应力值普遍下降,中1/3的应力值普遍上升;腭根桩和近颊根桩中的最大等效应力值分别为垂直载荷和侧向载荷下的最高值(分别为60.75~71.29 MPa,45.91~51.82 MPa),相对应的纤维桩-树脂水门汀界面上最大切应力值也为相应载荷下的最高值(分别为11.26~12.93 MPa,12.38~13.03 MPa)。各组在垂直载荷下水门汀-根管壁界面上的最大切应力值相近(9.96~10.58 MPa),而在侧向载荷下PMP组和PDMP组水门汀-根管壁界面上的最大切应力值较高。结论·上颌第一磨牙应根据不同的牙体缺损类型采取不同的纤维桩修复策略:PO缺损宜采用腭根单纤维桩修复;DO缺损宜采用腭根加近颊根双纤维桩修复,同时控制垂直力。

本文引用格式

仲麒 , 黄雨捷 , 张轶凡 , 宋迎爽 , 吴雅琴 , 瞿方 , 黄庆丰 , 胥春 . 纤维桩修复上颌第一磨牙牙体缺损的三维有限元力学分析[J]. 上海交通大学学报(医学版), 2022 , 42(8) : 1081 -1094 . DOI: 10.3969/j.issn.1674-8115.2022.08.013

Abstract

Objective ·To explore the appropriate strategy for restoring maxillary first molars with palatal-occlusal (PO) defect or distal-occlusal (DO) defect by using fiber-reinforced composite posts. Methods ·Two types of defects in maxillary first molars were established: PO defect and DO defect. For each type, 5 finite element models with different restoration strategies were created: no post (NP), palatal post (PP), palatal and distobuccal posts (PDP), palatal and mesiobuccal posts (PMP), and palatal, distobuccal and mesiobuccal posts (PDMP). In the multi-post groups, if 2 posts overlapped in the resin core, the thinner one was horizontally trimmed 1 mm below the intersection point. The models were loaded by a vertical force—an 800 N force parallel to the long axis of the tooth, and a lateral force—a 225 N force directed at 45° to the long axis of the tooth. The following parameters were calculated by using finite element analysis: equivalent stress in the tooth structure and the posts, and maximum shear stress on the post-cement and cement-canal interfaces. Results ·Under the vertical loading, the maximal equivalent stress on the external surfaces of the tooth with PO defect was the lowest in the PMP group (36.17 MPa), while it was the lowest in the PDP group with DO defect (36.23 MPa). Under the lateral loading, it was the lowest in the PDMP group with PO defect (40.47 MPa), while it was the lowest in the PMP group with DO defect (42.05 MPa). With either defect, the equivalent stress on the internal surfaces generally decreased at the cervical 1/3 of root canals and increased at the middle 1/3 after post inserting. Palatal canal post and mesiobuccal canal post respectively withstood the highest equivalent stress under vertical loading and lateral loading (60.75?71.29 MPa and 45.91?51.82 MPa, respectively), and the maximal shear stresses on these two post-cement interfaces were also the highest under the corresponding loading (11.26?12.93 MPa and 12.38?13.03 MPa, respectively). The maximum shear stresses on the cement-canal interfaces were similar among the groups under the vertical loading (9.96?10.58 MPa), while under the lateral loading they were higher in the PMP group and the PDMP group. Conclusion ·The appropriate strategy for fiber-reinforced composite post restoration on maxillary first molars should be determined according to the type of tooth defect. For PO defect, the strategy of one post restoring in palatal canal is recommended; for DO defect, the strategy of two posts restoring in palatal and mesiobuccal canals respectively with approaches to reduce vertical occlusal force is recommended.

参考文献

1 YAMUNADEVI A, PRATIBHA R, RAJMOHAN M, et al. First molars in permanent dentition and their malformations in various pathologies: a review[J]. J Pharm Bioallied Sci, 2021, 13(Suppl 1): S23-S30.
2 何三纲. 口腔解剖生理学[M]. 8版. 北京: 人民卫生出版社, 2020.
2 HE S G. Oral anatomy and physiology[M]. 8th ed. Beijing: People's Medical Publishing House, 2020.
3 王兴. 第四次全国口腔健康流行病学调查报告[M]. 北京: 人民卫生出版社, 2018.
3 WANG X. Report of the fourth national oral health epidemiological survey[M]. Beijing: People's Medical Publishing House, 2018.
4 张文玲, 黄永丽, 赵勇. 牙齿折裂的相关因素分析和治疗[J]. 河南大学学报(医学版), 2015, 34(2): 123-125.
4 ZHANG W L, HUANG Y L, ZHAO Y. Analysis factors and treatment associated with fractured teeth[J]. J Henan Univ (Med Sci), 2015, 34(2): 123-125.
5 胡坤娥, 胡冬梅, 谭荣, 等. 影响后牙折裂的相关因素分析[J]. 中国美容医学, 2012, 21(17): 2235-2237.
5 HU K E, HU D M, TAN R, et al. Analysis of factors associated with posterior fractured teeth[J]. Chin J Aesthetic Med, 2012, 21(17): 2235-2237.
6 ELIYAS S, JALILI J, MARTIN N. Restoration of the root canal treated tooth[J]. Br Dent J, 2015, 218(2): 53-62.
7 牛光良. 纤维桩理论与实践[M]. 北京: 人民卫生出版社, 2013.
7 NIU G L. Fiber post: current principles and practice[M]. Beijing: People's Medical Publishing House, 2020.
8 乔玮. 桩核材料的临床应用与发展[J]. 包头医学院学报, 2011, 27(1): 136-138.
8 QIAO W. Clinical application and development of post-core materials[J]. J Baotou Med Coll, 2011, 27(1): 136-138.
9 杜珍, 汲平. 纤维桩的分类及性能特点[J]. 口腔颌面修复学杂志, 2007, 8(3): 227-228, 232.
9 DU Z, JI P. Classification and properties of fiber posts[J]. Chin J Prosthodont, 2007, 8(3): 227-228, 232.
10 MARCHIONATTI A M E, WANDSCHER V F, RIPPE M P, et al. Clinical performance and failure modes of pulpless teeth restored with posts: a systematic review[J]. Braz Oral Res, 2017, 31: e64.
11 YANG A, LAMICHHANE A, XU C. Remaining coronal dentin and risk of fiber-reinforced composite post-core restoration failure: a meta-analysis[J]. Int J Prosthodont, 2015, 28(3): 258-264.
12 HARGREAVES K M, BERMAN L H. Cohen's pathways of the pulp expert consult[M]. 11th ed. St. Louis: Elsevier, 2015.
13 SCHWARTZ R S, ROBBINS J W. Post placement and restoration of endodontically treated teeth: a literature review[J]. J Endod, 2004, 30(5): 289-301.
14 YOON H G, OH H K, LEE D Y, et al. 3-D finite element analysis of the effects of post location and loading location on stress distribution in root canals of the mandibular 1st molar[J]. J Appl Oral Sci, 2018, 26: e20160406.
15 赵莉, 李丽君, 赵克, 等. 不同桩核系统修复上颌第一磨牙的有限元分析[J]. 上海口腔医学, 2013, 22(6): 607-612.
15 ZHAO L, LI L J, ZHAO K, et al. Finite element analysis of first maxillary molars restored with different post and core materials[J]. Shanghai J Stomatol, 2013, 22(6): 607-612.
16 刘峰. 纤维桩修复技术[M]. 北京: 人民卫生出版社, 2012.
16 LIU F. Fiber post restoration[M]. Beijing: People's Medical Publishing House, 2012.
17 ZHONG Q, HUANG Y, ZHANG Y, et al. Finite element analysis of maxillary first molar with a 4-wall defect and 1.5-mm-high ferrule restored with fiber-reinforced composite resin posts and resin core: the number and placement of the posts[J]. J Prosthet Dent, 2022. DOI: 10.1016/j.prosdent.2022.01.029.
18 王春艳. 龋病发生部位与年龄关系[J]. 内蒙古中医药, 2013, 32(25): 41.
18 WANG C Y. The relationship between caries location and age[J]. Inner Mong J Tradit Chin Med, 2013, 32(25): 41.
19 刘凡. 纤维桩性价比之王: Matchpost[Z/OL]. (2018-12-18) [2020-01-28]. https://mp.weixin.qq.com/s/-eEbnPK3BbRby0JtpOxuIw.
19 LIU F. The king of cost performance in fiber posts: Matchpost[Z/OL]. (2018-12-18) [2020-01-28]. https://mp.weixin.qq.com/s/-eEbn PK3BbRby0JtpOxuIw.
20 LI X X, KANG T, ZHAN D T, et al. Biomechanical behavior of endocrowns vs fiber post-core-crown vs cast post-core-crown for the restoration of maxillary central incisors with 1 mm and 2 mm ferrule height: a 3D static linear finite element analysis[J]. Medicine, 2020, 99(43): e22648.
21 GONZáLEZ-LLUCH C, PéREZ-GONZáLEZ A. Analysis of the effect of design parameters and their interactions on the strength of dental restorations with endodontic posts, using finite element models and statistical analysis[J]. Comput Methods Biomech Biomed Engin, 2016, 19(4): 428-439.
22 SAVYCHUK A, MANDA M, GALANIS C, et al. Stress generation in mandibular anterior teeth restored with different types of post-and-core at various levels of ferrule[J]. J Prosthet Dent, 2018, 119(6): 965-974.
23 MAHMOUDI M, SAIDI A R, AMINI P, et al. Influence of inhomogeneous dental posts on stress distribution in tooth root and interfaces: three-dimensional finite element analysis[J]. J Prosthet Dent, 2017, 118(6): 742-751.
24 DURMU? G, OYAR P. Effects of post core materials on stress distribution in the restoration of mandibular second premolars: a finite element analysis[J]. J Prosthet Dent, 2014, 112(3): 547-554.
25 AUSIELLO P, CIARAMELLA S, MARTORELLI M, et al. Mechanical behavior of endodontically restored canine teeth: effects of ferrule, post material and shape[J]. Dent Mater, 2017, 33(12): 1466-1472.
26 JIANG Q Z, HUANG Y T, TU X R, et al. Biomechanical properties of first maxillary molars with different endodontic cavities: a finite element analysis[J]. J Endod, 2018, 44(8): 1283-1288.
27 CHIBA A, HATAYAMA T, KAINOSE K, et al. The influence of elastic moduli of core materials on shear stress distributions at the adhesive interface in resin built-up teeth[J]. Dent Mater J, 2017, 36(1): 95-102.
28 AROLA D D, REPROGEL R K. Tubule orientation and the fatigue strength of human dentin[J]. Biomaterials, 2006, 27(9): 2131-2140.
29 PLOTINO G, GRANDE N M, BEDINI R, et al. Flexural properties of endodontic posts and human root dentin[J]. Dent Mater, 2007, 23(9): 1129-1135.
30 KINNEY J H, MARSHALL S J, MARSHALL G W. The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature[J]. Crit Rev Oral Biol Med, 2003, 14(1): 13-29.
31 吴悦梅, 张富强, 宋宁, 等. 石英纤维根管桩复合材料的力学性能研究[J]. 上海口腔医学, 2006, 15(3): 304-307.
31 WU Y M, ZHANG F Q, SONG N, et al. Study on the mechanical properties of quartz fiber-reinforced composite for canal post[J]. Shanghai J Stomatol, 2006, 15(3): 304-307.
32 ELSAKA S E, ELNAGHY A M. Bonding durability of titanium tetrafluoride treated glass fiber post with resin cement[J]. Dent Mater J, 2019, 38(2): 189-195.
33 CARDOSO G C, NAKANISHI L, ISOLAN C P, et al. Bond stability of universal adhesives applied to dentin using etch-and-rinse or self-etch strategies[J]. Braz Dent J, 2019, 30(5): 467-475.
文章导航

/