收稿日期: 2022-02-07
录用日期: 2022-05-23
网络出版日期: 2022-08-12
基金资助
上海市教育委员会高峰高原学科建设计划(20161421)
Research progress on the role of regulatory T cells in ocular surface diseases
Received date: 2022-02-07
Accepted date: 2022-05-23
Online published: 2022-08-12
Supported by
Shanghai Municipal Education Commission—Gaofeng Clinical Medicine Grant Support(20161421)
作为眼球的外部屏障,由角膜、结膜、眼睑及其上面的睑板腺、泪腺组成的眼表组织暴露于环境当中。在维持角膜光滑和湿润的同时,眼表组织还具有丰富的免疫细胞及相关因子;它们通过先天性免疫反应和适应性免疫反应对抗病原体,以及通过多种调节机制防止针对自身或无害抗原的不必要或者过度的炎症反应。免疫调节发生障碍是许多眼表疾病的基础。调节性T细胞(regulatory T cell,Treg细胞)作为眼表微环境的重要组成部分,通过多种机制积极地参与抑制针对自身、微生物和环境抗原的异常或过度的免疫反应,在诱导免疫耐受、调节机体免疫平衡方面起着重要作用。Treg细胞的功能受损和数量减少,会破坏眼表免疫稳态,进而导致或促进多种眼表疾病的发生。近年来,越来越多的研究着眼于Treg细胞在眼表疾病发生发展中的作用及相关的分子机制。部分临床前研究显示Treg细胞相关免疫疗法在眼表疾病中具有巨大的潜力。因此,该文就Treg细胞的生物学功能及其在干眼症、眼表过敏性疾病、眼表感染性疾病、角膜移植排斥和眼表组织修复方面发挥的作用进行简要综述,探讨Treg细胞疗法在眼表疾病领域的广阔应用前景。
阿婷曦 , 邵春益 , 傅瑶 . 调节性T细胞在眼表疾病中作用的研究进展[J]. 上海交通大学学报(医学版), 2022 , 42(8) : 1145 -1150 . DOI: 10.3969/j.issn.1674-8115.2022.08.021
As the external barrier of the eyeball, the ocular surface tissue, composed of the cornea, the conjunctiva, the eyelids, the meibomian glands, and the lacrimal gland, is exposed to the environment. In addition to keeping the cornea smooth and wet, the ocular surface is equipped with immune cells and related factors, which are capable of fighting against pathogens through innate and adaptive immune responses and preventing unnecessary or excessive inflammatory reactions against autoantigens or harmless foreign antigens through several regulatory mechanisms. The disorder of immune regulation is at the core of many ocular surface diseases. As an important part of the ocular surface microenvironment, regulatory T cells (Treg cells) actively participate in the suppression of abnormal or excessive immune responses towards the auto, microbial and environmental antigens through various mechanisms, and play a key role in inducing immune tolerance and regulating immune balance. Functional and numerical defects of Treg cells can trigger disruption of the immune homeostasis, leading to or promoting the occurrence of ocular surface diseases. In recent years, more and more researchers are focusing on the role and related molecular mechanisms of Treg cells in the occurrence and development of ocular surface diseases. Some preclinical studies have shown that Treg cell-related immunotherapy has great therapeutic potential in ocular surface diseases. Therefore, this article reviews the biological functions of Treg cells and their roles in the ocular surface diseases, such as dry eye disease, allergic diseases, infectious diseases, corneal transplantation rejection, and tissue repair, and then discusses the promising application prospects of Treg cells therapy in the field.
1 | GERSHON R K, KONDO K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes[J]. Immunology, 1970, 18(5): 723-737. |
2 | SAKAGUCHI S, SAKAGUCHI N, ASANO M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol, 1995, 155(3): 1151-1164. |
3 | GALLETTI J G, GUZMáN M, GIORDANO M N. Mucosal immune tolerance at the ocular surface in health and disease[J]. Immunology, 2017, 150(4): 397-407. |
4 | GALLETTI J G, DE PAIVA C S. The ocular surface immune system through the eyes of aging[J]. Ocul Surf, 2021, 20: 139-162. |
5 | HORI J, YAMAGUCHI T, KEINO H, et al. Immune privilege in corneal transplantation[J]. Prog Retin Eye Res, 2019, 72: 100758. |
6 | GROVER P, GOEL P N, GREENE M I. Regulatory T cells: regulation of identity and function[J]. Front Immunol, 2021, 12: 750542. |
7 | FONTENOT J D, GAVIN M A, RUDENSKY A Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells[J]. Nat Immunol, 2003, 4(4): 330-336. |
8 | KOMATSU N, OKAMOTO K, SAWA S, et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis[J]. Nat Med, 2014, 20(1): 62-68. |
9 | LIU W H, PUTNAM A L, ZHOU X Y, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells[J]. J Exp Med, 2006, 203(7): 1701-1711. |
10 | SHEVACH E M, THORNTON A M. tTregs, pTregs, and iTregs: similarities and differences[J]. Immunol Rev, 2014, 259(1): 88-102. |
11 | RAFFIN C, VO L T, BLUESTONE J A. Treg cell-based therapies: challenges and perspectives[J]. Nat Rev Immunol, 2020, 20(3): 158-172. |
12 | SANJABI S, OH S A, LI M O. Regulation of the immune response by TGF-β: from conception to autoimmunity and infection[J]. Cold Spring Harb Perspect Biol, 2017, 9(6): a022236. |
13 | WANG R X, YU C R, DAMBUZA I M, et al. Interleukin-35 induces regulatory B cells that suppress autoimmune disease[J]. Nat Med, 2014, 20(6): 633-641. |
14 | CHINEN T, KANNAN A K, LEVINE A G, et al. An essential role for the IL-2 receptor in T reg cell function[J]. Nat Immunol, 2016, 17(11): 1322-1333. |
15 | WING J B, ISE W, KUROSAKI T, et al. Regulatory T cells control antigen-specific expansion of Tfh cell number and humoral immune responses via the coreceptor CTLA-4[J]. Immunity, 2014, 41(6): 1013-1025. |
16 | YAN Y P, ZHANG G X, GRAN B, et al. IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis[J]. J Immunol, 2010, 185(10): 5953-5961. |
17 | BAUCHé D, JOYCE-SHAIKH B, JAIN R, et al. LAG3+ regulatory T cells restrain interleukin-23-producing CX3CR1+ gut-resident macrophages during group 3 innate lymphoid cell-driven colitis[J]. Immunity, 2018, 49(2): 342-352.e5. |
18 | ALMAHARIQ M, MEI F C, WANG H, et al. Exchange protein directly activated by cAMP modulates regulatory T-cell-mediated immunosuppression[J]. Biochem J, 2015, 465(2): 295-303. |
19 | CAO X F, CAI S F, FEHNIGER T A, et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance[J]. Immunity, 2007, 27(4): 635-646. |
20 | MU?OZ-ROJAS A R, MATHIS D. Tissue regulatory T cells: regulatory chameleons[J]. Nat Rev Immunol, 2021, 21(9): 597-611. |
21 | CRAIG J P, NICHOLS K K, AKPEK E K, et al. TFOS DEWS Ⅱ definition and classification report[J]. Ocular Surf, 2017, 15(3): 276-283. |
22 | BRON A J, DE PAIVA C S, CHAUHAN S K, et al. TFOS DEWS Ⅱ pathophysiology report[J]. Ocular Surf, 2017, 15(3): 438-510. |
23 | SCHAUMBURG C S, SIEMASKO K F, DE PAIVA C S, et al. Ocular surface APCs are necessary for autoreactive T cell-mediated experimental autoimmune lacrimal keratoconjunctivitis[J]. J Immunol, 2011, 187(7): 3653-3662. |
24 | CHEN Y H, CHAUHAN S K, LEE H S, et al. Effect of desiccating environmental stress versus systemic muscarinic AChR blockade on dry eye immunopathogenesis[J]. Invest Ophthalmol Vis Sci, 2013, 54(4): 2457-2464. |
25 | CHAUHAN S K, EL ANNAN J, ECOIFFIER T, et al. Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression[J]. J Immunol, 2009, 182(3): 1247-1252. |
26 | SIEMASKO K F, GAO J P, CALDER V L, et al. In vitro expanded CD4+CD25+Foxp3+ regulatory T cells maintain a normal phenotype and suppress immune-mediated ocular surface inflammation[J]. Invest Ophthalmol Vis Sci, 2008, 49(12): 5434-5440. |
27 | RATAY M L, GLOWACKI A J, BALMERT S C, et al. Treg-recruiting microspheres prevent inflammation in a murine model of dry eye disease[J]. J Control Release, 2017, 258: 208-217. |
28 | SINGH R B, BLANCO T, MITTAL S K, et al. Pigment epithelium-derived factor enhances the suppressive phenotype of regulatory T cells in a murine model of dry eye disease[J]. Am J Pathol, 2021, 191(4): 720-729. |
29 | YAO G H, QI J J, LIANG J, et al. Mesenchymal stem cell transplantation alleviates experimental Sj?gren's syndrome through IFN-β/IL-27 signaling axis[J]. Theranostics, 2019, 9(26): 8253-8265. |
30 | XU J J, WANG D D, LIU D Y, et al. Allogeneic mesenchymal stem cell treatment alleviates experimental and clinical Sj?gren syndrome[J]. Blood, 2012, 120(15): 3142-3151. |
31 | NIETO J E, CASANOVA I, SERNA-OJEDA J C, et al. Increased expression of TLR4 in circulating CD4+ T cells in patients with allergic conjunctivitis and in vitro attenuation of Th2 inflammatory response by α-MSH[J]. Int J Mol Sci, 2020, 21(21): 7861. |
32 | GALICIA-CARREóN J, SANTACRUZ C, AYALA-BALBOA J, et al. An imbalance between frequency of CD4+CD25+FOXP3+ regulatory T cells and CCR4+ and CCR9+ circulating helper T cells is associated with active perennial allergic conjunctivitis[J]. Clin Dev Immunol, 2013, 2013: 919742. |
33 | SUMI T, FUKUSHIMA A, FUKUDA K, et al. Thymus-derived CD4+ CD25+ T cells suppress the development of murine allergic conjunctivitis[J]. Int Arch Allergy Immunol, 2007, 143(4): 276-281. |
34 | FUKUSHIMA A, SUMI T, ISHIDA W, et al. Depletion of thymus-derived CD4+CD25+ T cells abrogates the suppressive effects of alpha-galactosylceramide treatment on experimental allergic conjunctivitis[J]. Allergol Int, 2008, 57(3): 241-246. |
35 | YU W C, GENG S, SUO Y Z, et al. Critical role of regulatory T cells in the latency and stress-induced reactivation of HSV-1[J]. Cell Rep, 2018, 25(9): 2379-2389.e3. |
36 | LOBO A M, AGELIDIS A M, SHUKLA D. Pathogenesis of herpes simplex keratitis: the host cell response and ocular surface sequelae to infection and inflammation[J]. Ocul Surf, 2019, 17(1): 40-49. |
37 | SEHRAWAT S, SUVAS S, SARANGI P P, et al. In vitro-generated antigen-specific CD4+ CD25+ Foxp3+ regulatory T cells control the severity of herpes simplex virus-induced ocular immunoinflammatory lesions[J]. J Virol, 2008, 82(14): 6838-6851. |
38 | SUVAS S, AZKUR A K, KIM B S, et al. CD4+ CD25+ regulatory T cells control the severity of viral immunoinflammatory lesions[J]. J Immunol, 2004, 172(7): 4123-4132. |
39 | BHELA S, VARANASI S K, JAGGI U, et al. The plasticity and stability of regulatory T cells during viral-induced inflammatory lesions[J]. J Immunol, 2017, 199(4): 1342-1352. |
40 | VARANASI S K, REDDY P B J, BHELA S, et al. Azacytidine treatment inhibits the progression of herpes stromal keratitis by enhancing regulatory T cell function[J]. J Virol, 2017, 91(7): e02367-e02316. |
41 | LAM A J, HOEPPLI R E, LEVINGS M K. Harnessing advances in T regulatory cell biology for cellular therapy in transplantation[J]. Transplantation, 2017, 101(10): 2277-2287. |
42 | CHAUHAN S K, SABAN D R, LEE H K, et al. Levels of Foxp3 in regulatory T cells reflect their functional status in transplantation[J]. J Immunol, 2009, 182(1): 148-153. |
43 | HORI J, TANIGUCHI H, WANG M C, et al. GITR ligand-mediated local expansion of regulatory T cells and immune privilege of corneal allografts[J]. Invest Ophthalmol Vis Sci, 2010, 51(12): 6556-6565. |
44 | INOMATA T, HUA J, DI ZAZZO A, et al. Impaired function of peripherally induced regulatory T cells in hosts at high risk of graft rejection[J]. Sci Rep, 2016, 6: 39924. |
45 | INOMATA T, HUA J, NAKAO T, et al. Corneal tissue from dry eye donors leads to enhanced graft rejection[J]. Cornea, 2018, 37(1): 95-101. |
46 | HUA J, INOMATA T, CHEN Y H, et al. Pathological conversion of regulatory T cells is associated with loss of allotolerance[J]. Sci Rep, 2018, 8(1): 7059. |
47 | TAHVILDARI M, OMOTO M, CHEN Y H, et al. In vivo expansion of regulatory T cells by low-dose interleukin-2 treatment increases allograft survival in corneal transplantation[J]. Transplantation, 2016, 100(3): 525-532. |
48 | SHAO C Y, CHEN Y H, NAKAO T, et al. Local delivery of regulatory T cells promotes corneal allograft survival[J]. Transplantation, 2019, 103(1): 182-190. |
49 | LI J T, TAN J, MARTINO M M, et al. Regulatory T-cells: potential regulator of tissue repair and regeneration[J]. Front Immunol, 2018, 9: 585. |
50 | SCHIAFFINO S, PEREIRA M G, CICILIOT S, et al. Regulatory T cells and skeletal muscle regeneration[J]. FEBS J, 2017, 284(4): 517-524. |
51 | NOSBAUM A, PREVEL N, TRUONG H A, et al. Cutting edge: regulatory T cells facilitate cutaneous wound healing[J]. J Immunol, 2016, 196(5): 2010-2014. |
52 | ALI N W, ZIRAK B, RODRIGUEZ R S, et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation[J]. Cell, 2017, 169(6): 1119-1129.e11. |
53 | LI J T, YANG K Y, TAM R C Y, et al. Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner[J]. Theranostics, 2019, 9(15): 4324-4341. |
54 | YAN D, YU F, CHEN L B, et al. Subconjunctival injection of regulatory T cells potentiates corneal healing via orchestrating inflammation and tissue repair after acute alkali burn[J]. Invest Ophthalmol Vis Sci, 2020, 61(14): 22. |
55 | ARPAIA N, GREEN J A, MOLTEDO B, et al. A distinct function of regulatory T cells in tissue protection[J]. Cell, 2015, 162(5): 1078-1089. |
56 | COCO G, FOULSHAM W, NAKAO T, et al. Regulatory T cells promote corneal endothelial cell survival following transplantation via interleukin-10[J]. Am J Transplant, 2020, 20(2): 389-398. |
57 | ALTSHULER A, AMITAI-LANGE A, TARAZI N, et al. Discrete limbal epithelial stem cell populations mediate corneal homeostasis and wound healing[J]. Cell Stem Cell, 2021, 28(7): 1248-1261.e8. |
58 | PILAT N, SPRENT J. Treg therapies revisited: tolerance beyond deletion[J]. Front Immunol, 2021, 11: 622810. |
59 | MACDONALD K N, PIRET J M, LEVINGS M K. Methods to manufacture regulatory T cells for cell therapy[J]. Clin Exp Immunol, 2019, 197(1): 52-63. |
60 | BRUNSTEIN C G, MILLER J S, MCKENNA D H, et al. Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect[J]. Blood, 2016, 127(8): 1044-1051. |
61 | BLUESTONE J A, BUCKNER J H, FITCH M, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells[J]. Sci Transl Med, 2015, 7(315): 315ra189. |
62 | DESREUMAUX P, FOUSSAT A, ALLEZ M, et al. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn's disease[J]. Gastroenterology, 2012, 143(5): 1207-1217.e2. |
63 | SAADOUN D, ROSENZWAJG M, JOLY F, et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis[J]. N Engl J Med, 2011, 365(22): 2067-2077. |
64 | KORETH J, MATSUOKA K I, KIM H T, et al. Interleukin-2 and regulatory T cells in graft-versus-host disease[J]. N Engl J Med, 2011, 365(22): 2055-2066. |
/
〈 |
|
〉 |