收稿日期: 2022-05-18
录用日期: 2022-08-18
网络出版日期: 2022-09-28
基金资助
上海市自然科学基金面上项目(22ZR1437800);上海市青年科技英才扬帆计划(20YF1424500)
Aptamer-drug conjugates (ApDCs): new trend for cancer precision therapy
Received date: 2022-05-18
Accepted date: 2022-08-18
Online published: 2022-09-28
Supported by
Natural Science Foundation of Shanghai(22ZR1437800);Shanghai Sailing Program(20YF1424500)
韩永琪 , 韩达 , 閤谦 , 姬丁坤 , 谭蔚泓 . 核酸适体药物偶联物——肿瘤精准治疗新风向[J]. 上海交通大学学报(医学版), 2022 , 42(9) : 1176 -1181 . DOI: 10.3969/j.issn.1674-8115.2022.09.003
Cancer is a worldwide medical issue that seriously threatens human health. Precision molecular medicine provides a new strategy for cancer theranostics. As excellent targeting recognition molecules and drug delivery platforms, aptamers and aptamer drug-conjugates (ApDCs) have provided a series of useful molecular tools for cancer precision therapy. In this paper, the properties and the selection techniques of aptamers, the construction of ApDCs and their applications to clinical tumor-targeting therapy are reviewed. Additionally, the challenges and perspective of ApDCs in precision molecular medicine for cancers are presented. This review may provide new horizons for molecular-targeted anti-tumor drugs in the therapy of clinical malignant tumors.
Key words: molecular medicine; aptamer; anti-cancer drug; targeted therapy
1 | SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. |
2 | SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33. |
3 | FERLAY J, COLOMBET M, SOERJOMATARAM I, et al. Cancer statistics for the year 2020: an overview[J]. Int J Cancer, 2021, 149(4): 778-789. |
4 | 潘锋, 张清涵. 科技创新助力肿瘤精准医学发展[J]. 中国医药科学, 2021, 11(24): 1-5. |
4 | PAN F, ZHANG Q H. Technological innovation facilitates the development of precision tumor medicine[J]. Chin Med Pharm, 2021, 11(24): 1-5. |
5 | 谭蔚泓, 徐海燕, 刘艳岚, 等. 分子医学助力健康中国[J]. 肿瘤学杂志, 2021, 27(1): 1-3. |
5 | TAN W H, XU H Y, LIU Y L, et al. Molecular medicine contributes to healthy China[J]. J Chin Oncol, 2021, 27(1): 1-3. |
6 | KIM D H, SEO J M, SHIN K J, et al. Design and clinical developments of aptamer-drug conjugates for targeted cancer therapy[J]. Biomater Res, 2021, 25(1): 42. |
7 | XUAN W, PENG Y, DENG Z, et al. A basic insight into aptamer-drug conjugates (ApDCs)[J]. Biomaterials, 2018, 182: 216-226. |
8 | ELLINGTON A D, SZOSTAK J W. In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346(6287): 818-822. |
9 | TUERK C, GOLD L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase[J]. Science, 1990, 249(4968): 505-510. |
10 | ZHU G, NIU G, CHEN X. Aptamer-drug conjugates[J]. Bioconjug Chem, 2015, 26(11): 2186-2197. |
11 | SEFAH K, SHANGGUAN D, XIONG X, et al. Development of DNA aptamers using cell-SELEX[J]. Nat Protoc, 2010, 5(6): 1169-1185. |
12 | NI S, ZHUO Z, PAN Y, et al. Recent progress in aptamer discoveries and modifications for therapeutic applications[J]. ACS Appl Mater Interfaces, 2021, 13(8): 9500-9519. |
13 | ZHU G, CHEN X. Aptamer-based targeted therapy[J]. Adv Drug Deliv Rev, 2018, 134: 65-78. |
14 | SOUNDARARAJAN S, CHEN W, SPICER EK, et al. The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells[J]. Cancer Res, 2008, 68(7): 2358-2365. |
15 | ZHU C, YANG G, GHULAM M, et al. Evolution of multi-functional capillary electrophoresis for high-efficiency selection of aptamers[J]. Biotechnol Adv, 2019, 37(8): 107432. |
16 | WU Y X, KWON Y J. Aptamers: the “evolution” of SELEX[J]. Methods, 2016, 106: 21-28. |
17 | BEREZOVSKI M V, MUSHEEV M U, DRABOVICH A P, et al. Non-SELEX: selection of aptamers without intermediate amplification of candidate oligonucleotides[J]. Nat Protoc, 2006, 1(3): 1359-1369. |
18 | JEONG S, HAN S R, LEE Y J, et al. Selection of RNA aptamers specific to active prostate-specific antigen[J]. Biotechnol Lett, 2010, 32(3): 379-385. |
19 | YANG X, LI N, GORENSTEIN D G. Strategies for the discovery of therapeutic aptamers[J]. Expert Opin Drug Discov, 2011, 6(1): 75-87. |
20 | BAGALKOT V, FAROKHZAD O C, LANGER R, et al. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform[J]. Angew Chem Int Ed Engl, 2006, 45(48): 8149-8152. |
21 | HU Y, DUAN J, ZHAN Q, et al. Novel MUC1 aptamer selectively delivers cytotoxic agent to cancer cells in vitro[J]. PLoS One, 2012, 7(2): e31970. |
22 | LIU Z, DUAN J H, SONG Y M, et al. Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro[J]. J Transl Med, 2012, 10: 148. |
23 | HUANG Y F, SHANGGUAN D, LIU H, et al. Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells[J]. Chembiochem, 2009, 10(5): 862-868. |
24 | ZHOU F, WANG P, PENG Y, et al. Molecular engineering-based aptamer-drug conjugates with accurate tunability of drug ratios for drug combination targeted cancer therapy[J]. Angew Chem Int Ed Engl, 2019, 58(34): 11661-11665. |
25 | HE J, PENG T, PENG Y, et al. Molecularly engineering triptolide with aptamers for high specificity and cytotoxicity for triple-negative breast cancer[J]. J Am Chem Soc, 2020, 142(6): 2699-2703. |
26 | YANG Q, DENG Z, WANG D, et al. Conjugating aptamer and mitomycin C with reductant-responsive linker leading to synergistically enhanced anticancer effect[J]. J Am Chem Soc, 2020, 142(5): 2532-2540. |
27 | WANG R, ZHU G, MEI L, et al. Automated modular synthesis of aptamer-drug conjugates for targeted drug delivery[J]. J Am Chem Soc, 2014, 136(7): 2731-2734. |
28 | JIN C, ZHANG H, ZOU J, et al. Floxuridine homomeric oligonucleotides “hitchhike” with albumin in?situ for cancer chemotherapy[J]. Angew Chem Int Ed Engl, 2018, 57(29): 8994-8997. |
29 | XUAN W, XIA Y, LI T, et al. Molecular self-assembly of bioorthogonal aptamer-prodrug conjugate micelles for hydrogen peroxide and pH-independent cancer chemodynamic therapy[J]. J Am Chem Soc, 2020, 142(2): 937-944. |
30 | YANG Y, HE J, ZHU W, et al. Molecular domino reactor built by automated modular synthesis for cancer treatment[J]. Theranostics, 2020, 10(9): 4030-4041. |
31 | GAO F, ZHOU J, SUN Y, et al. Programmable repurposing of existing drugs as pharmaceutical elements for the construction of aptamer-drug conjugates[J]. ACS Appl Mater Interfaces, 2021, 13(8): 9457-9463. |
32 | YANG C, ZHAO H, SUN Y, et al. Programmable manipulation of oligonucleotide-albumin interaction for elongated circulation time[J]. Nucleic Acids Res, 2022, 50(6): 3083-3095. |
33 | NI X, CASTANARES M, MUKHERJEE A, et al. Nucleic acid aptamers: clinical applications and promising new horizons[J]. Curr Med Chem, 2011, 18(27): 4206-4214. |
34 | NG E W, SHIMA D T, CALIAS P, et al. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease[J]. Nat Rev Drug Discov, 2006, 5(2): 123-132. |
35 | 周灵丽, 叶茂. 核酸适配体介导的肿瘤免疫治疗研究进展[J]. 生物化学与生物物理进展, 2022, 49(6): 1036-1044. |
35 | ZHOU L L, YE M. Research progress of aptamer-mediated tumor immunotherapy[J]. Prog Biochem Biophys, 2022, 49(6): 1036-1044. |
36 | HARBECK N, PENAULT-LLORCA F, CORTES J, et al. Breast cancer[J]. Nat Rev Dis Prim, 2019, 5(1): 66. |
37 | YOON S, ARMSTRONG B, HABIB N, et al. Blind SELEX approach identifies RNA aptamers that regulate EMT and inhibit metastasis[J]. Mol Cancer Res, 2017, 15(7): 811-820. |
38 | PARK J Y, CHO Y L, CHAE J R, et al. Gemcitabine-incorporated G-quadruplex aptamer for targeted drug delivery into pancreas cancer[J]. Mol Ther Nucleic Acids, 2018, 12: 543-553. |
39 | APTEKAR S, ARORA M, LAWRENCE C L, et al. Selective targeting to glioma with nucleic acid aptamers[J]. PLoS One, 2015, 10(8): e0134957. |
40 | WU Q, WANG Y, WANG H, et al. DNA aptamers from whole-cell SELEX as new diagnostic agents against glioblastoma multiforme cells[J]. Analyst, 2018, 143(10): 2267-2275. |
41 | LUO Z, YAN Z, JIN K, et al. Precise glioblastoma targeting by AS1411 aptamer-functionalized poly (L?γ?glutamylglutamine)?paclitaxel nanoconjugates[J]. J Colloid Interface Sci, 2017, 490: 783-796. |
42 | ZHAO N, PEI S N, QI J, et al. Oligonucleotide aptamer-drug conjugates for targeted therapy of acute myeloid leukemia[J]. Biomaterials, 2015, 67: 42-51. |
/
〈 |
|
〉 |