论著 · 基础研究

α-倒捻子素对肌萎缩侧索硬化的作用及其机制

  • 王大元 ,
  • 徐见容 ,
  • 江淦 ,
  • 宋清香 ,
  • 陈钧 ,
  • 宋华华 ,
  • 谷晓 ,
  • 高小玲
展开
  • 1.上海交通大学医学院药理学与化学生物学系,上海 200025
    2.复旦大学药学院,上海 201203
王大元(1994—),男,博士生;电子信箱:wangdayuan@sjtu.edu.cn
高小玲,电子信箱:shellygao1@sjtu.edu.cn

收稿日期: 2022-05-29

  录用日期: 2022-08-24

  网络出版日期: 2022-09-17

基金资助

国家自然科学基金(81722043);上海市高水平地方高校创新团队(SHSMU-ZDCX20211201)

Effect of α-mangostin on amyotrophic lateral sclerosis and its mechanism

  • Dayuan WANG ,
  • Jianrong XU ,
  • Gan JIANG ,
  • Qingxiang SONG ,
  • Jun CHEN ,
  • Huahua SONG ,
  • Xiao GU ,
  • Xiaoling GAO
Expand
  • 1.Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
    2.Fudan University School of Pharmacy, Shanghai 201203, China
GAO Xiaoling, E-mail: shellygao1@sjtu.edu.cn.

Received date: 2022-05-29

  Accepted date: 2022-08-24

  Online published: 2022-09-17

Supported by

National Natural Science Foundation of China(81722043);Innovative Research Team of High-Level Local Universities in Shanghai(SHSMU-ZDCX20211201)

摘要

目的·探究α-倒捻子素(α-mangostin,AM)对超氧化物歧化酶1(superoxide dismutase 1,SOD1)突变型肌萎缩侧索硬化(amyotrophic lateral sclerosis,ALS)的干预作用及可能的机制。方法·通过试剂盒检测小胶质细胞ATP水平变化,探究AM对SOD1聚集体处理的小胶质细胞(SOD1-ALS小胶质细胞模型)能量平衡的调控作用。通过Western blotting检测AMP活化蛋白激酶(AMP-activated protein kinase,AMPK)及其代谢调节通路中关键分子肝脏激酶B1和PPARγ协同激活因子-1α的激活水平,探究AM对疾病状态小胶质细胞AMPK通路的调控作用。通过化合物C抑制AMPK激活后检测ATP变化,探究AMPK在AM调控疾病状态小胶质细胞能量平衡中的作用。抑制AMPK激活的同时通过ELISA检测SOD1-ALS小胶质细胞对SOD1的摄取率和降解率,探究AMPK介导的能量调控在AM调节SOD1-ALS小胶质细胞清除SOD1中的作用。通过Western blotting和免疫荧光检测探究AM对疾病状态小胶质细胞自噬的作用及自噬在AM调节小胶质细胞降解SOD1中的作用。通过制备纳米颗粒包载的AM(NPAM)实现AM的体内给药。通过尾静脉注射的方式对SOD1*G93A ALS模型小鼠连续给予NPAM 30 d,1次/d。通过免疫组织化学染色检测NPAM给药后ALS小鼠腰段脊髓SOD1蛋白的聚集情况,通过尼氏染色和NeuN免疫组织化学染色检测神经元的损伤和丢失程度,通过转棒实验和后肢握紧实验评价ALS小鼠的运动能力,通过记录体质量和生存期评价ALS小鼠的疾病进程。结果·AM恢复了疾病状态小胶质细胞的ATP水平,增强了其对SOD1聚集体的摄取和通过自噬的降解;抑制AMPK通路后,AM的这些作用消失。NPAM减少了SOD1*G93A ALS模型小鼠腰段脊髓SOD1聚集体,减少了腰段脊髓神经元的损伤和丢失,还缓解了ALS小鼠的运动损伤和体质量丢失。结论·AM通过AMPK介导的能量平衡恢复作用增强了SOD1-ALS小胶质细胞模型对SOD1聚集体的清除,并显著改善了ALS模型小鼠的神经病理变化及疾病症状。

本文引用格式

王大元 , 徐见容 , 江淦 , 宋清香 , 陈钧 , 宋华华 , 谷晓 , 高小玲 . α-倒捻子素对肌萎缩侧索硬化的作用及其机制[J]. 上海交通大学学报(医学版), 2022 , 42(9) : 1265 -1274 . DOI: 10.3969/j.issn.1674-8115.2022.09.013

Abstract

Objective ·To study the effect of α-mangostin (AM) on the superoxide dismutase 1 (SOD1) mutant amyotrophic lateral sclerosis (ALS) and the possible mechanism. Methods ·The ATP level in the microglia was measured by kits to investigate the effect of AM on the energy balance in the SOD1 aggregates-treated microglia (SOD1-ALS model microglia). Western blotting was used to detect the activation levels of AMP-activated protein kinase (AMPK) and the key molecules in its metabolic regulation pathway including liver kinase B1 and PPARγ coactivator 1α, in order to explore the regulatory role of AM on AMPK pathway in the disease-associated microglia. The ATP level was also detected after AMPK activation being inhibited by compound C to explore the role of AMPK in the regulation of energy balance by AM in the SOD1-ALS microglia. The microglial uptake and degradation of SOD1 aggregates was detected by using ELISA with or without inhibition of AMPK activation, to explore the role of AMPK-mediated energy regulation in AM regulating SOD1 clearance in the disease-associated microglia. Western blotting and immunofluorescence were used to study the effect of AM on microglial autophagy and the role of autophagy in AM regulating the degradation of SOD1 in the microglia. AM-encapsulated nanoparticles (NPAMs) were prepared to realize the in vivo treatment of AM. NPAMs were injected into the SOD1*G93A ALS model mice through the caudal vein for 30 d, once a day. SOD1 aggregates were detected by immunohistochemistry in the lumbar spinal cords of the ALS mice. Neuronal damage and loss were measured by using Nissl staining and anti-NeuN immunohistochemistry. Motor ability of the ALS mice was evaluated by rotarod test and hindlimb clasping test. Disease progress of the ALS mice was evaluated by recording body mass and survival time. Results ·AM increased the ATP level in the diseased-associated microglia and enhanced microglial phagocytosis and autophagy-mediated degradation of SOD1 aggregates. While inhibiting AMPK pathway abolished these effects of AM, NPAM reduced SOD1 aggregates in the lumbar spinal cord of the SOD1*G93A ALS model mice, and reduced the neuron damage and loss. NPAM also alleviated the body mass loss and the damaged motor ability of the ALS mice. Conclusion ·AM enhances microglial clearance of SOD1 aggregates through AMPK-mediated recovery of energy balance, and thus alleviates the neuropathological changes and symptoms in ALS mice.

参考文献

1 HARDIMAN O, VAN DEN BERG L H, KIERNAN M C. Clinical diagnosis and management of amyotrophic lateral sclerosis[J]. Nat Rev Neurol, 2011, 7(11): 639-649.
2 CHIò A, MAZZINI L, MORA G. Disease-modifying therapies in amyotrophic lateral sclerosis[J]. Neuropharmacology, 2020, 167: 107986.
3 VAN ZUNDERT B, BROWN R H Jr. Silencing strategies for therapy of SOD1-mediated ALS[J]. Neurosci Lett, 2017, 636: 32-39.
4 ABATI E, BRESOLIN N, COMI G, et al. Silence superoxide dismutase 1 (SOD1): a promising therapeutic target for amyotrophic lateral sclerosis (ALS)[J]. Expert Opin Ther Targets, 2020, 24(4): 295-310.
5 PRASAD A, BHARATHI V, SIVALINGAM V, et al. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis[J]. Front Mol Neurosci, 2019, 12: 25.
6 SHENG Y W, CHATTOPADHYAY M, WHITELEGGE J, et al. SOD1 aggregation and ALS: role of metallation states and disulfide status[J]. Curr Top Med Chem, 2012, 12(22): 2560-2572.
7 CHEN Y M, WANG H F, YING Z, et al. Ibudilast enhances the clearance of SOD1 and TDP-43 aggregates through TFEB-mediated autophagy and lysosomal biogenesis: the new molecular mechanism of ibudilast and its implication for neuroprotective therapy[J]. Biochem Biophys Res Commun, 2020, 526(1): 231-238.
8 HAN H H, WEI W Y, DUAN W S, et al. Autophagy-linked FYVE protein (Alfy) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS)[J]. In Vitro Cell Dev Biol Anim, 2015, 51(3): 249-263.
9 KIM Y, PARK J H, JANG J Y, et al. Characterization and Hsp104-induced artificial clearance of familial ALS-related SOD1 aggregates[J]. Biochem Biophys Res Commun, 2013, 434(3): 521-526.
10 CRISTOFANI R, CRIPPA V, RUSMINI P, et al. Inhibition of retrograde transport modulates misfolded protein accumulation and clearance in motoneuron diseases[J]. Autophagy, 2017, 13(8): 1280-1303.
11 PUTTAPARTHI K, WOJCIK C, RAJENDRAN B, et al. Aggregate formation in the spinal cord of mutant SOD1 transgenic mice is reversible and mediated by proteasomes[J]. J Neurochem, 2003, 87(4): 851-860.
12 COLONNA M, BUTOVSKY O. Microglia function in the central nervous system during health and neurodegeneration[J]. Annu Rev Immunol, 2017, 35: 441-468.
13 HENKEL J S, BEERS D R, ZHAO W H, et al. Microglia in ALS: the good, the bad, and the resting[J]. J Neuroimmune Pharmacol, 2009, 4(4): 389-398.
14 ALDANA B I. Microglia-specific metabolic changes in neurodegeneration[J]. J Mol Biol, 2019, 431(9): 1830-1842.
15 ENGL E, ATTWELL D. Non-signalling energy use in the brain[J]. J Physiol, 2015, 593(16): 3417-3429.
16 CHODARI L, DILSIZ AYTEMIR M, VAHEDI P, et al. Targeting mitochondrial biogenesis with polyphenol compounds[J]. Oxid Med Cell Longev, 2021, 2021: 4946711.
17 RAFIEI H, OMIDIAN K, BANDY B. Dietary polyphenols protect against oleic acid-induced steatosis in an in vitro model of NAFLD by modulating lipid metabolism and improving mitochondrial function[J]. Nutrients, 2019, 11(3): 541.
18 VAN DER BLIEK A M, SEDENSKY M M, MORGAN P G. Cell biology of the mitochondrion[J]. Genetics, 2017, 207(3): 843-871.
19 YAO L, GU X, SONG Q X, et al. Nanoformulated alpha-mangostin ameliorates Alzheimer's disease neuropathology by elevating LDLR expression and accelerating amyloid-β clearance[J]. J Control Release, 2016, 226: 1-14.
20 DEORA V, LEE J D, ALBORNOZ E A, et al. The microglial NLRP3 inflammasome is activated by amyotrophic lateral sclerosis proteins[J]. Glia, 2020, 68(2): 407-421.
21 GILL C, PHELAN J P, HATZIPETROS T, et al. SOD1-positive aggregate accumulation in the CNS predicts slower disease progression and increased longevity in a mutant SOD1 mouse model of ALS[J]. Sci Rep, 2019, 9(1): 6724.
22 ZHAO Z C, FU J S, LI S P, et al. Neuroprotective effects of genistein in a SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis[J]. J Neuroimmune Pharmacol, 2019, 14(4): 688-696.
23 MARTíNEZ-MURIANA A, MANCUSO R, FRANCOS-QUIJORNA I, et al. CSF1R blockade slows the progression of amyotrophic lateral sclerosis by reducing microgliosis and invasion of macrophages into peripheral nerves[J]. Sci Rep, 2016, 6: 25663.
24 XIE M L, LIU Y U, ZHAO S Y, et al. TREM2 interacts with TDP-43 and mediates microglial neuroprotection against TDP-43-related neurodegeneration[J]. Nat Neurosci, 2022, 25(1): 26-38.
25 BONORA M, PATERGNANI S, RIMESSI A, et al. ATP synthesis and storage[J]. Purinergic Signal, 2012, 8(3): 343-357.
26 GARCIA D, SHAW R J. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance[J]. Mol Cell, 2017, 66(6): 789-800.
27 FU R Y, SHEN Q Y, XU P F, et al. Phagocytosis of microglia in the central nervous system diseases[J]. Mol Neurobiol, 2014, 49(3): 1422-1434.
28 VARSHAVSKY A. The ubiquitin system, autophagy, and regulated protein degradation[J]. Annu Rev Biochem, 2017, 86: 123-128.
29 PLAZA-ZABALA A, SIERRA-TORRE V, SIERRA A. Autophagy and microglia: novel partners in neurodegeneration and aging[J]. Int J Mol Sci, 2017, 18(3): 598.
30 KAUR S J, MCKEOWN S R, RASHID S. Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis[J]. Gene, 2016, 577(2): 109-118.
31 NORRIS S P, LIKANJE M F N, ANDREWS J A. Amyotrophic lateral sclerosis: update on clinical management[J]. Curr Opin Neurol, 2020, 33(5): 641-648.
32 HARDIMAN O, AL-CHALABI A, CHIO A, et al. Amyotrophic lateral sclerosis[J]. Nat Rev Dis Primers, 2017, 3: 17071.
33 LI L, BRUNNER I, HAN A R, et al. Pharmacokinetics of α?mangostin in rats after intravenous and oral application[J]. Mol Nutr Food Res, 2011, 55(Suppl 1): S67-S74.
34 WANG D Y, GU X, MA X Y, et al. Nanopolyphenol rejuvenates microglial surveillance of multiple misfolded proteins through metabolic reprogramming[J]. Acta Pharm Sin B, 2022. DOI: https://doi.org/10.1016/j.apsb.2022.07.014.
35 BARTANUSZ V, JEZOVA D, ALAJAJIAN B, et al. The blood-spinal cord barrier: morphology and clinical implications[J]. Ann Neurol, 2011, 70(2): 194-206.
文章导航

/