1 |
HARDIMAN O, VAN DEN BERG L H, KIERNAN M C. Clinical diagnosis and management of amyotrophic lateral sclerosis[J]. Nat Rev Neurol, 2011, 7(11): 639-649.
|
2 |
CHIÒ A, MAZZINI L, MORA G. Disease-modifying therapies in amyotrophic lateral sclerosis[J]. Neuropharmacology, 2020, 167: 107986.
|
3 |
VAN ZUNDERT B, BROWN R H Jr. Silencing strategies for therapy of SOD1-mediated ALS[J]. Neurosci Lett, 2017, 636: 32-39.
|
4 |
ABATI E, BRESOLIN N, COMI G, et al. Silence superoxide dismutase 1 (SOD1): a promising therapeutic target for amyotrophic lateral sclerosis (ALS)[J]. Expert Opin Ther Targets, 2020, 24(4): 295-310.
|
5 |
PRASAD A, BHARATHI V, SIVALINGAM V, et al. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis[J]. Front Mol Neurosci, 2019, 12: 25.
|
6 |
SHENG Y W, CHATTOPADHYAY M, WHITELEGGE J, et al. SOD1 aggregation and ALS: role of metallation states and disulfide status[J]. Curr Top Med Chem, 2012, 12(22): 2560-2572.
|
7 |
CHEN Y M, WANG H F, YING Z, et al. Ibudilast enhances the clearance of SOD1 and TDP-43 aggregates through TFEB-mediated autophagy and lysosomal biogenesis: the new molecular mechanism of ibudilast and its implication for neuroprotective therapy[J]. Biochem Biophys Res Commun, 2020, 526(1): 231-238.
|
8 |
HAN H H, WEI W Y, DUAN W S, et al. Autophagy-linked FYVE protein (Alfy) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS)[J]. In Vitro Cell Dev Biol Anim, 2015, 51(3): 249-263.
|
9 |
KIM Y, PARK J H, JANG J Y, et al. Characterization and Hsp104-induced artificial clearance of familial ALS-related SOD1 aggregates[J]. Biochem Biophys Res Commun, 2013, 434(3): 521-526.
|
10 |
CRISTOFANI R, CRIPPA V, RUSMINI P, et al. Inhibition of retrograde transport modulates misfolded protein accumulation and clearance in motoneuron diseases[J]. Autophagy, 2017, 13(8): 1280-1303.
|
11 |
PUTTAPARTHI K, WOJCIK C, RAJENDRAN B, et al. Aggregate formation in the spinal cord of mutant SOD1 transgenic mice is reversible and mediated by proteasomes[J]. J Neurochem, 2003, 87(4): 851-860.
|
12 |
COLONNA M, BUTOVSKY O. Microglia function in the central nervous system during health and neurodegeneration[J]. Annu Rev Immunol, 2017, 35: 441-468.
|
13 |
HENKEL J S, BEERS D R, ZHAO W H, et al. Microglia in ALS: the good, the bad, and the resting[J]. J Neuroimmune Pharmacol, 2009, 4(4): 389-398.
|
14 |
ALDANA B I. Microglia-specific metabolic changes in neurodegeneration[J]. J Mol Biol, 2019, 431(9): 1830-1842.
|
15 |
ENGL E, ATTWELL D. Non-signalling energy use in the brain[J]. J Physiol, 2015, 593(16): 3417-3429.
|
16 |
CHODARI L, DILSIZ AYTEMIR M, VAHEDI P, et al. Targeting mitochondrial biogenesis with polyphenol compounds[J]. Oxid Med Cell Longev, 2021, 2021: 4946711.
|
17 |
RAFIEI H, OMIDIAN K, BANDY B. Dietary polyphenols protect against oleic acid-induced steatosis in an in vitro model of NAFLD by modulating lipid metabolism and improving mitochondrial function[J]. Nutrients, 2019, 11(3): 541.
|
18 |
VAN DER BLIEK A M, SEDENSKY M M, MORGAN P G. Cell biology of the mitochondrion[J]. Genetics, 2017, 207(3): 843-871.
|
19 |
YAO L, GU X, SONG Q X, et al. Nanoformulated alpha-mangostin ameliorates Alzheimer's disease neuropathology by elevating LDLR expression and accelerating amyloid-β clearance[J]. J Control Release, 2016, 226: 1-14.
|
20 |
DEORA V, LEE J D, ALBORNOZ E A, et al. The microglial NLRP3 inflammasome is activated by amyotrophic lateral sclerosis proteins[J]. Glia, 2020, 68(2): 407-421.
|
21 |
GILL C, PHELAN J P, HATZIPETROS T, et al. SOD1-positive aggregate accumulation in the CNS predicts slower disease progression and increased longevity in a mutant SOD1 mouse model of ALS[J]. Sci Rep, 2019, 9(1): 6724.
|
22 |
ZHAO Z C, FU J S, LI S P, et al. Neuroprotective effects of genistein in a SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis[J]. J Neuroimmune Pharmacol, 2019, 14(4): 688-696.
|
23 |
MARTÍNEZ-MURIANA A, MANCUSO R, FRANCOS-QUIJORNA I, et al. CSF1R blockade slows the progression of amyotrophic lateral sclerosis by reducing microgliosis and invasion of macrophages into peripheral nerves[J]. Sci Rep, 2016, 6: 25663.
|
24 |
XIE M L, LIU Y U, ZHAO S Y, et al. TREM2 interacts with TDP-43 and mediates microglial neuroprotection against TDP-43-related neurodegeneration[J]. Nat Neurosci, 2022, 25(1): 26-38.
|
25 |
BONORA M, PATERGNANI S, RIMESSI A, et al. ATP synthesis and storage[J]. Purinergic Signal, 2012, 8(3): 343-357.
|
26 |
GARCIA D, SHAW R J. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance[J]. Mol Cell, 2017, 66(6): 789-800.
|
27 |
FU R Y, SHEN Q Y, XU P F, et al. Phagocytosis of microglia in the central nervous system diseases[J]. Mol Neurobiol, 2014, 49(3): 1422-1434.
|
28 |
VARSHAVSKY A. The ubiquitin system, autophagy, and regulated protein degradation[J]. Annu Rev Biochem, 2017, 86: 123-128.
|
29 |
PLAZA-ZABALA A, SIERRA-TORRE V, SIERRA A. Autophagy and microglia: novel partners in neurodegeneration and aging[J]. Int J Mol Sci, 2017, 18(3): 598.
|
30 |
KAUR S J, MCKEOWN S R, RASHID S. Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis[J]. Gene, 2016, 577(2): 109-118.
|
31 |
NORRIS S P, LIKANJE M F N, ANDREWS J A. Amyotrophic lateral sclerosis: update on clinical management[J]. Curr Opin Neurol, 2020, 33(5): 641-648.
|
32 |
HARDIMAN O, AL-CHALABI A, CHIO A, et al. Amyotrophic lateral sclerosis[J]. Nat Rev Dis Primers, 2017, 3: 17071.
|
33 |
LI L, BRUNNER I, HAN A R, et al. Pharmacokinetics of α‑mangostin in rats after intravenous and oral application[J]. Mol Nutr Food Res, 2011, 55(Suppl 1): S67-S74.
|
34 |
WANG D Y, GU X, MA X Y, et al. Nanopolyphenol rejuvenates microglial surveillance of multiple misfolded proteins through metabolic reprogramming[J]. Acta Pharm Sin B, 2022. DOI: https://doi.org/10.1016/j.apsb.2022.07.014.
|
35 |
BARTANUSZ V, JEZOVA D, ALAJAJIAN B, et al. The blood-spinal cord barrier: morphology and clinical implications[J]. Ann Neurol, 2011, 70(2): 194-206.
|