收稿日期: 2022-10-14
录用日期: 2023-02-09
网络出版日期: 2023-02-28
基金资助
上海市第六人民医院基础科研基金(ynms202207)
Change of transcription factor EB activity and autophagy in hippocampus of type 2 diabetic encephalopathy mice
Received date: 2022-10-14
Accepted date: 2023-02-09
Online published: 2023-02-28
Supported by
Basic Scientific Research Fund of Shanghai Sixth People's Hospital(ynms202207)
目的·探讨2型糖尿病脑病小鼠海马中转录因子EB(transcription factor EB,TFEB)及上游蛋白活性和自噬功能的变化。方法·选取20只健康的8周龄雄性C57BL/6J小鼠,随机分为2型糖尿病(type 2 diabetes mellitus,T2DM)组和对照(CON)组,每组10只。T2DM组通过高脂饲料喂养和注射链脲佐菌素(streptozotocin,STZ)造模;CON组以普通饲料喂养,注射等体积柠檬酸钠缓冲液。2组小鼠每周检测随机血糖及体质量,第10周进行Morris水迷宫行为学实验。行为学实验结束后,行经腹腔注射葡萄糖耐量检测(intraperitoneal glucose tolerance test,IPGTT);之后处死小鼠,留取血液和海马样本。用ELISA试剂盒检测血浆中胰岛素含量;通过Western blotting检测海马组织中淀粉样前体蛋白(amyloid precursor protein,APP)、tau蛋白、磷酸化tau(p-tau)蛋白、自噬溶酶体相关蛋白[包括溶酶体相关膜糖蛋白1(lysosomal-associated membrane protein 1,LAMP1)、微管相关蛋白1A/1B-轻链3(microtubule-related protein 1A/1B-light chain 3,LC3)、P62]、TFEB、磷酸化TFEB(p-TFEB)、哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)、磷酸化mTOR(p-mTOR)与溶酶体钙调通道蛋白MCOLN1(mucolipin TRP cation channel 1,MCOLN1)的表达。采用免疫荧光染色检测小鼠海马组织中β-淀粉样蛋白(β-peptide,Aβ)和p-tau蛋白的沉积。结果·与CON组相比,T2DM组小鼠体质量、随机血糖、血浆中胰岛素水平和IPGTT结果均显著升高(均P<0.05)。水迷宫行为学实验中,T2DM组小鼠逃避潜伏期较CON组显著延长,在目标象限中的停留时间显著缩短,穿越平台次数显著减少(均P<0.05),提示T2DM组小鼠已出现学习记忆功能下降。与CON组相比,T2DM组小鼠的海马组织中Aβ、APP、tau、p-tau蛋白表达水平与p-tau/tau显著升高,自噬相关蛋白LAMP1表达和LC3-Ⅱ/LC3-Ⅰ比值显著下降,P62表达水平显著升高,TFEB和MCOLN1蛋白表达水平显著下降,p-TFEB、mTOR、p-mTOR表达与p-mTOR/mTOR比值显著升高(均P<0.05)。结论·糖尿病脑病小鼠海马组织出现阿尔茨海默病样神经病变,同时海马中TFEB活性降低,自噬功能下调,TFEB上游调节因子MCOLN1表达下降,mTOR活性增强。
关键词: 糖尿病脑病; 自噬; 转录因子EB; 溶酶体钙调通道蛋白; 哺乳动物雷帕霉素靶蛋白
陈奕馨 , 程丽珍 , 林祎嘉 , 苗雅 . 2型糖尿病脑病小鼠海马中转录因子EB活性与自噬功能的变化[J]. 上海交通大学学报(医学版), 2023 , 43(2) : 162 -170 . DOI: 10.3969/j.issn.1674-8115.2023.02.004
Objective ·To investigate the changes of transcription factor EB (TFEB), the activity of the upstream proteins and autophagy in the hippocampus of mice with type 2 diabetic encephalopathy. Methods ·Twenty healthy 8-week-old male C57BL/6J mice were randomly divided into type 2 diabetes mellitus (T2DM) group and control (CON) group, with 10 mice in each group. The T2DM group was fed with high fat feed and injected with streptozotocin (STZ); the CON group was fed with ordinary diet and injected with equal-volume sodium citrate buffer. The random blood glucose level and the body weight were measured on the mice in both groups weekly. In the 10th week, the Morris water maze behavioral experiments were performed. Then, the intraperitoneal glucose tolerance test (IPGTT) was carried out. The blood and hippocampus samples were collected after the mice were sacrificed. The plasma insulin content was detected by the ELISA kit. The protein levels of amyloid precursor protein (APP), tau protein, phospho-tau (p-tau) protein, autophagy-lysosome-related proteins [including lysosomal-associated membrane protein 1 (LAMP1), microtubule-related protein 1A/1B-light chain 3 (LC3), and P62], TFEB, p-TFEB, mammalian target of rapamycin (mTOR), p-mTOR, and mucolipin TRP cation channel 1 (MCOLN1) in the hippocampus were detected by Western blotting. The deposition of β-peptide (Aβ) and p-tau proteins in the hippocampus was detected by immunofluorescence staining. Results ·Compared with the CON group, the body weight, the random blood glucose level, the plasma insulin level, and the IPGTT results were significantly increased in the T2DM group (P<0.05). In the water maze experiments, the escape latency of the T2DM group in the place navigation increased, and the time spent in the target quadrant and the number of times crossing the platform in the spatial probe decreased (P<0.05), indicating that the ability of learning and memory of mice was damaged in the T2DM group. The levels of Aβ, APP, tau, p-tau, P62, p-TFEB, mTOR and p-mTOR proteins, and the ratios of p-tau/tau and p-mTOR/mTOR significantly increased, while the expression of LAMP1, TFEB and MCOLN1 and the ratio of LC3-Ⅱ/LC3-Ⅰ prominently decreased in the hippocampus of mice in the T2DM group in comparison with the CON group (P<0.05). Conclusion ·Alzheimer's disease-like neuropathy is observed in the hippocampus of diabetic encephalopathy mice, along with decreased TFEB activity, down-regulated autophagy function, decreased expression of MCOLN1, and enhanced mTOR activity in the hippocampus.
1 | BIESSELS G J, DESPA F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications[J]. Nat Rev Endocrinol, 2018, 14(10): 591-604. |
2 | ZILLIOX L A, CHADRASEKARAN K, KWAN J Y, et al. Diabetes and cognitive impairment[J]. Curr Diab Rep, 2016, 16(9): 87. |
3 | BIESSELS G J, STAEKENBORG S, BRUNNER E, et al. Risk of dementia in diabetes mellitus: a systematic review[J]. Lancet Neurol, 2006, 5(1): 64-74. |
4 | LI Y Z, ZHANG Y Y, WANG L, et al. Autophagy impairment mediated by S-nitrosation of ATG4B leads to neurotoxicity in response to hyperglycemia[J]. Autophagy, 2017, 13(7): 1145-1160. |
5 | MA L Y, LV Y L, HUO K, et al. Autophagy-lysosome dysfunction is involved in Aβ deposition in STZ-induced diabetic rats[J]. Behav Brain Res, 2017, 320: 484-493. |
6 | WU Y Q, YE L B, YUAN Y, et al. Autophagy activation is associated with neuroprotection in diabetes-associated cognitive decline[J]. Aging Dis, 2019, 10(6): 1233-1245. |
7 | LIU X, ZHENG X C, LU Y L, et al. TFEB dependent autophagy-lysosomal pathway: an emerging pharmacological target in sepsis[J]. Front Pharmacol, 2021, 12: 794298. |
8 | PUERTOLLANO R, FERGUSON S M, BRUGAROLAS J, et al. The complex relationship between TFEB transcription factor phosphorylation and subcellular localization[J]. EMBO J, 2018, 37(11): e98804. |
9 | SONG W C, ZHANG C L, GOU L S, et al. Endothelial TFEB (transcription factor EB) restrains IKK (IκB kinase)-p65 pathway to attenuate vascular inflammation in diabetic db/db mice[J]. Arterioscler Thromb Vasc Biol, 2019, 39(4): 719-730. |
10 | YANG C, CHEN X C, LI Z H, et al. SMAD3 promotes autophagy dysregulation by triggering lysosome depletion in tubular epithelial cells in diabetic nephropathy[J]. Autophagy, 2021, 17(9): 2325-2344. |
11 | NAPOLITANO G, ESPOSITO A, CHOI H, et al. mTOR-dependent phosphorylation controls TFEB nuclear export[J]. Nat Commun, 2018, 9(1): 3312. |
12 | MARTINA J A, CHEN Y, GUCEK M, et al. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB[J]. Autophagy, 2012, 8(6): 903-914. |
13 | XU H X, REN D J. Lysosomal physiology[J]. Annu Rev Physiol, 2015, 77: 57-80. |
14 | MEDINA D L, DI PAOLA S, PELUSO I, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB[J]. Nat Cell Biol, 2015, 17(3): 288-299. |
15 | SU H B, WANG X J. Proteasome malfunction activates the PPP3/calcineurin-TFEB-SQSTM1/p62 pathway to induce macroautophagy in the heart[J]. Autophagy, 2020, 16(11): 2114-2116. |
16 | WINZELL M S, AHRéN B. The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes[J]. Diabetes, 2004, 53(Suppl 3): S215-S219. |
17 | LUO Z X, WAN Q, HAN Y M, et al. CAPE-pNO2 ameliorates diabetic brain injury through modulating Alzheimer's disease key proteins, oxidation, inflammation and autophagy via a Nrf2-dependent pathway[J]. Life Sci, 2021, 287: 119929. |
18 | DENVER P, ENGLISH A, MCCLEAN P L. Inflammation, insulin signaling and cognitive function in aged APP/PS1 mice[J]. Brain Behav Immun, 2018, 70: 423-434. |
19 | SUN J, XU J X, LING Y, et al. Fecal microbiota transplantation alleviated Alzheimer's disease-like pathogenesis in APP/PS1 transgenic mice[J]. Transl Psychiatry, 2019, 9(1): 189. |
20 | SETTEMBRE C, DI MALTA C, POLITO V A, et al. TFEB links autophagy to lysosomal biogenesis[J]. Science, 2011, 332(6036): 1429-1433. |
21 | ZHANG X L, CHENG X P, YU L, et al. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy[J]. Nat Commun, 2016, 7: 12109. |
22 | KIM H K, LEE G H, BHATTARAI K R, et al. TMBIM6 (transmembrane BAX inhibitor motif containing 6) enhances autophagy through regulation of lysosomal calcium[J]. Autophagy, 2021, 17(3): 761-778. |
23 | SETTEMBRE C, ZONCU R, MEDINA D L, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB[J]. EMBO J, 2012, 31(5): 1095-1108. |
24 | CHEN X H, GAO F, LIN C C, et al. mTOR-mediated autophagy in the hippocampus is involved in perioperative neurocognitive disorders in diabetic rats[J]. CNS Neurosci Ther, 2022, 28(4): 540-553. |
/
〈 |
|
〉 |